zbMATH — the first resource for mathematics

Confining thin elastic sheets and folding paper. (English) Zbl 1127.74005
Summary: Crumpling a sheet of paper leads to the formation of complex folding patterns over several length scales. This can be understood on the basis of the interplay of a nonconvex elastic energy, which favors locally isometric deformations, and a small singular perturbation, which penalizes high curvature. Based on three-dimensional nonlinear elasticity and by using a combination of explicit constructions and general results from differential geometry, we prove that, in agreement with previous heuristic results in the physics literature, the total energy per unit thickness of such folding patterns scales at most as the thickness of the sheet to the power \(5/3\). For the case of a single fold we also obtain the corresponding lower bound.

74B20 Nonlinear elasticity
74G65 Energy minimization in equilibrium problems in solid mechanics
Full Text: DOI
[1] Ben Belgacem H., Conti S., DeSimone A., Müller S. (2002). Energy scaling of compressed elastic films. Arch. Rat. Mech. Anal. 164: 1–37 · Zbl 1041.74048 · doi:10.1007/s002050200206
[2] Cerda E., Chaieb S., Melo F., Mahadevan L. (1999). Conical dislocations in crumpling. Nature 401: 46–49 · doi:10.1038/43395
[3] Chen X., Hutchinson J.W. (2004). Herringbone buckling patterns of compressed thin films on compliant substrates. J. Appl. Mech. 71: 597–603 · Zbl 1111.74362 · doi:10.1115/1.1756141
[4] Conti S., Maggi F., Müller S. (2006). Rigorous derivation of Föppl’s theory for clamped elastic membranes leads to relaxation. SIAM J. Math. Anal. 38: 657–680 · Zbl 1146.74025 · doi:10.1137/050632567
[5] DiDonna B.A., Witten T.A. (2001). Anomalous strength of membranes with elastic ridges. Phys. Rev. Lett. 87: 206105.1–206105.4 · doi:10.1103/PhysRevLett.87.206105
[6] DoCarmo M.P. (1976). Differential geometry of curves and surfaces. Prentice-Hall, Englewood Cliffs
[7] Eliashberg, Y., Mishachev, N.: Introduction to the h-principle. Graduate studies in Mathematics, no. 48, American Mathematical Society, Providence, 2002 · Zbl 1334.57030
[8] Friesecke G., James R., Müller S. (2002). A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Commun. Pure Appl. Math 55: 1461–1506 · Zbl 1021.74024 · doi:10.1002/cpa.10048
[9] Friesecke G., James R., Müller S. (2006). A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Ration. Mech. Anal. 180: 183–236 · Zbl 1100.74039 · doi:10.1007/s00205-005-0400-7
[10] Hartman P., Nirenberg L. (1959). On spherical image maps whose Jacobians do not change sign. Am. J. Math. 81: 901–920 · Zbl 0094.16303 · doi:10.2307/2372995
[11] Horák J., Lord G.J., Peletier M.A. (2006). Cylinder buckling: the mountain pass as an organizing center. SIAM J. Appl. Math. 66: 1793–1824 (electronic) · Zbl 1134.35042 · doi:10.1137/050635778
[12] Houle P.A., Sethna J.P. (1996). Acoustic emission from crumpling paper. Phys. Rev. E 54: 278–283 · doi:10.1103/PhysRevE.54.278
[13] Kirchheim, B.: Rigidity and geometry of microstructures, MPI-MIS Lecture notes no. 16, 2002
[14] Kramer E.M. (1997). The von Kármán equations, the stress function, and elastic ridges in high dimensions. J. Math. Phys. 38: 830–846 · Zbl 0877.73033 · doi:10.1063/1.531893
[15] Kramer E.M., Witten T.A. (1997). Stress condensation in crushed elastic manifolds. Phys. Rev. Lett. 78: 1303–1306 · doi:10.1103/PhysRevLett.78.1303
[16] Kuiper N. (1955). On C 1 isometric imbeddings I. Proc. Kon. Acad. Wet. Amsterdam A 58: 545–556 · Zbl 0067.39601
[17] Kuiper N. (1955). On C 1 isometric imbeddings II. Proc. Kon. Acad. Wet. Amsterdam A 58: 683–689 · Zbl 0067.39601
[18] LeDret H., Raoult A. (1995). The nonlinear membrane model as a variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 73: 549–578 · Zbl 0847.73025
[19] Lobkovsky A.E. (1996). Boundary layer analysis of the ridge singularity in a thin plate. Phys. Rev. E 53: 3750–3759 · doi:10.1103/PhysRevE.53.3750
[20] Lobkovsky A.E., Gentges S., Li H., Morse D., Witten T.A. (1995). Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270: 1482–1485 · doi:10.1126/science.270.5241.1482
[21] Massey W.S. (1962). Surfaces of Gaussian curvature zero in Euclidean 3-space. Tôhoku Math. J. 14(2): 73–79 · Zbl 0114.36903 · doi:10.2748/tmj/1178244205
[22] Müller S., Pakzad M.R. (2005). Regularity properties of isometric immersions. Math. Z. 251: 313–331 · Zbl 1082.58010 · doi:10.1007/s00209-005-0804-y
[23] Nash J. (1954). C 1 isometric imbeddings. Ann. Math. 60: 383–396 · Zbl 0058.37703 · doi:10.2307/1969840
[24] Pakzad M.R. (2004). On the Sobolev space of isometric immersions. J. Diff. Geom. 66: 47–69 · Zbl 1064.58009
[25] Pogorelov A.V.: Surfaces of bounded outer curvature. Izdat. Har’kov. Gos. Univ., Kharkov, 1956 (Russian)
[26] Pogorelov, A.V.: Extrinsic geometry of convex surfaces, vol. 35. American Mathematical Society, Providence, Translations of Mathematical Monographs, 1973 · Zbl 0311.53067
[27] Venkataramani, S.C.: The energy of crumpled sheets in Föppl-von Kármán plate theory, preprint, 2003
[28] Venkataramani S.C. (2004). Lower bounds for the energy in a crumpled elastic sheet–a minimal ridge. Nonlinearity 17: 301–312 · Zbl 1058.74038 · doi:10.1088/0951-7715/17/1/017
[29] Venkataramani S.C., Witten T.A., Kramer E.M., Geroch R.P. (2000). Limitations on the smooth confinement of an unstretchable manifold. J. Math. Phys. 41: 5107–5128 · Zbl 0995.53041 · doi:10.1063/1.533394
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.