zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Novel delay-dependent robust stability criterion of delayed cellular neural networks. (English) Zbl 1127.93352
Summary: We consider the problem of global robust stability for cellular neural networks which have time-varying delay and parametric uncertainties. Using the Lyapunov method and linear matrix inequality (LMI) framework, the delay-dependent criterion is presented in terms of LMIs. Two numerical examples are presented to illustrate the effectiveness of our result.

93D09Robust stability of control systems
34K20Stability theory of functional-differential equations
34H05ODE in connection with control problems
LMI toolbox
Full Text: DOI
[1] Hopfield, J.: Proc natl acad sci USA. 81, 3088 (1984)
[2] Kosko, B.: Appl opt. 26, 4947 (1987)
[3] Kosko, B.: IEEE trans syst man cyb. 18, 49 (1988)
[4] Gopalsamy, K.; He, X. Z.: IEEE trans neural networks. 5, 998 (1994)
[5] Cao, J.; Wang, L.: Phys rev E. 61, 1825 (2000)
[6] Guo, S. J.; Huang, L. H.; Dai, B. X.; Zhang, Z. Z.: Phys lett A. 317, 97 (2003)
[7] Liao, X.; Yu, J.: Int J circuit theory appl. 26, 219 (1998)
[8] Zhao, H.: Phys lett A. 297, 182 (2002)
[9] Li, Y.: Chaos, solitons & fractals. 24, 279 (2005)
[10] Cao, J.: Int J syst sci. 31, 1313 (2000)
[11] Chen, A.; Huang, L.; Cao, J.: Appl math comput. 137, 177 (2003)
[12] Liang, J.; Cao, J.: Chaos, solitons & fractals. 22, 773 (2004)
[13] Huang, X.; Cao, J.; Huang, D. S.: Chaos, solitons & fractals. 24, 885 (2005)
[14] Huang, L.; Huang, C.; Liu, B.: Phys lett A. 345, 330 (2005)
[15] Cao, J.; Zhou, D.: Neural networks. 11, 1601 (1998) · Zbl 0967.34067
[16] Arik, S.: Phys lett A. 311, 504 (2003)
[17] Liao, X.; Chen, G.; Sanchez, E. N.: IEEE trans circuits syst I, fundam theory appl. 49, 1033 (2002)
[18] Zhang, Q.; Ma, R.; Xu, J.: Electron lett. 37, 575 (2001)
[19] Xu, S.; Lam, J.; Ho, D. W. C.; Zou, Y.: IEEE trans circuits syst II, express briefs. 52, 349 (2005)
[20] Zhang, Q.; Wei, X.; Xu, J.: Phys lett A. 318, 399 (2003)
[21] Chen, A.; Cao, J.; Huang, L.: IEEE trans circuits syst I. 49, 1028 (2002)
[22] Zhang, H.; Li, C.; Liao, X.: Chaos, solitons & fractals. 25, 357 (2005)
[23] Boyd, B.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in systems and control theory. (1994) · Zbl 0816.93004
[24] Moon, Y. S.; Park, P.; Kwon, W. H.; Lee, Y. S.: Int J control. 74, 1447 (2001)
[25] Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M.: LMI control toolbox user’s guide. (1995)
[26] Hale, J.; Lunel, S. M. Verduyn: Introduction to functional differential equations. (1993) · Zbl 0787.34002