×

Novel delay-dependent robust stability criterion of delayed cellular neural networks. (English) Zbl 1127.93352

Summary: We consider the problem of global robust stability for cellular neural networks which have time-varying delay and parametric uncertainties. Using the Lyapunov method and linear matrix inequality (LMI) framework, the delay-dependent criterion is presented in terms of LMIs. Two numerical examples are presented to illustrate the effectiveness of our result.

MSC:

93D09 Robust stability
34K20 Stability theory of functional-differential equations
34H05 Control problems involving ordinary differential equations

Software:

LMI toolbox
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hopfield, J., Proc Natl Acad Sci USA, 81, 3088 (1984)
[2] Kosko, B., Appl Opt, 26, 4947 (1987)
[3] Kosko, B., IEEE Trans Syst Man Cyb, 18, 49 (1988)
[4] Gopalsamy, K.; He, X. Z., IEEE Trans Neural Networks, 5, 998 (1994)
[5] Cao, J.; Wang, L., Phys Rev E, 61, 1825 (2000)
[6] Guo, S. J.; Huang, L. H.; Dai, B. X.; Zhang, Z. Z., Phys Lett A, 317, 97 (2003)
[7] Liao, X.; Yu, J., Int J Circuit Theory Appl, 26, 219 (1998)
[8] Zhao, H., Phys Lett A, 297, 182 (2002)
[9] Li, Y., Chaos, Solitons & Fractals, 24, 279 (2005)
[10] Cao, J., Int J Syst Sci, 31, 1313 (2000)
[11] Chen, A.; Huang, L.; Cao, J., Appl Math Comput, 137, 177 (2003)
[12] Liang, J.; Cao, J., Chaos, Solitons & Fractals, 22, 773 (2004)
[13] Huang, X.; Cao, J.; Huang, D. S., Chaos, Solitons & Fractals, 24, 885 (2005)
[14] Huang, L.; Huang, C.; Liu, B., Phys Lett A, 345, 330 (2005)
[15] Cao, J.; Zhou, D., Neural Networks, 11, 1601 (1998)
[16] Arik, S., Phys Lett A, 311, 504 (2003)
[17] Liao, X.; Chen, G.; Sanchez, E. N., IEEE Trans Circuits Syst I, Fundam Theory Appl, 49, 1033 (2002)
[18] Zhang, Q.; Ma, R.; Xu, J., Electron Lett, 37, 575 (2001)
[19] Xu, S.; Lam, J.; Ho, D. W.C.; Zou, Y., IEEE Trans Circuits Syst II, Express Briefs, 52, 349 (2005)
[20] Zhang, Q.; Wei, X.; Xu, J., Phys Lett A, 318, 399 (2003)
[21] Chen, A.; Cao, J.; Huang, L., IEEE Trans Circuits Syst I, 49, 1028 (2002)
[22] Zhang, H.; Li, C.; Liao, X., Chaos, Solitons & Fractals, 25, 357 (2005)
[23] Boyd, B.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in systems and control theory (1994), SIAM: SIAM Philadelphia
[24] Moon, Y. S.; Park, P.; Kwon, W. H.; Lee, Y. S., Int J Control, 74, 1447 (2001)
[25] Gahinet, P.; Nemirovski, A.; Laub, A.; Chilali, M., LMI control toolbox user’s guide (1995), The Mathworks: The Mathworks Massachusetts
[26] Hale, J.; Verduyn Lunel, S. M., Introduction to functional differential equations (1993), Springer-Verlag: Springer-Verlag New York · Zbl 0787.34002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.