×

\(\Pi\)-supports for modules for finite group schemes. (English) Zbl 1128.20031

Over the past 25 years, the study of cohomological support varieties and representation-theoretic rank varieties has led to numerous results in the modular representation theory of finite groups, restricted Lie algebras, and other related structures. This work follows previous work of the authors [Am. J. Math. 127, No. 2, 379-420 (2005; Zbl 1072.20009), Erratum ibid. 128, No. 4, 1067-1068 (2006; Zbl 1098.20500)] in attempting to formulate a unifying theory for arbitrary finite group schemes (equivalently finite-dimensional cocommutative Hopf algebras) over arbitrary fields of prime characteristic. The paper contains several foundational results as well as a number of illuminating examples.
Let \(G\) be a finite group scheme over a field \(k\) of prime characteristic \(p\). Extending their previous notion of a \(p\)-point (defined over algebraically closed fields), the authors introduce the notion of a \(\pi\)-point of \(G\) which is a flat map of \(K\)-algebras \(K[t]/t^p\to KG\) which factors through the group algebra of a unipotent Abelian subgroup scheme for a field extension \(K/k\). The \(\Pi\)-points of \(G\), denoted \(\Pi(G)\), is the set of equivalence classes of such \(\pi\)-points under a certain specialization relation.
The first of several important results is that \(\Pi(G)\) is homeomorphic to the projectivized prime ideal spectrum of the (even-dimensional) cohomology ring of \(G\) over \(k\). For a finite-dimensional \(G\)-module \(M\), the \(\Pi\)-support of \(M\) is defined as a certain subset of \(\Pi(G)\) and can be identified cohomologically. Moreover, the authors extend this definition to arbitrary (i.e., even infinite-dimensional) \(G\)-modules. For an arbitrary module, the \(\Pi\)-support does not have a direct cohomological interpretation. The authors show that it does satisfy a number of nice properties and that every subset of \(\Pi(G)\) can be identified with the \(\Pi\)-support of some module. Another fundamental result is that the projectivity of a module can be detected by restriction to \(\pi\)-points which extends several known results in special cases. Further, the \(\Pi\)-support is used to determine the tensor-ideal thick subcategories of the stable module category of finite-dimensional \(G\)-modules, thus verifying a conjecture of M. Hovey, J. H. Palmieri, and N. P. Strickland [Mem. Am. Math. Soc. 610 (1997; Zbl 0881.55001)]. Using this stable module category information, the authors give a scheme structure to \(\Pi(G)\) and show that the aforementioned homeomorphism of varieties can be extended to an isomorphism of schemes.

MSC:

20G05 Representation theory for linear algebraic groups
14L15 Group schemes
20C20 Modular representations and characters
20G10 Cohomology theory for linear algebraic groups
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
Full Text: DOI

References:

[1] J. L. Alperin and L. Evens, Representations, resolutions, and Quillen’s dimension theorem , J. Pure Appl. Algebra 22 (1981), 1–9. · Zbl 0469.20008 · doi:10.1016/0022-4049(81)90079-7
[2] G. S. Avrunin and L. L. Scott, Quillen stratification for modules , Invent. Math. 66 (1982), 277–286. · Zbl 0489.20042 · doi:10.1007/BF01389395
[3] C. P. Bendel, Cohomology and projectivity of modules for finite group schemes , Math. Proc. Cambridge Philos. Soc. 131 (2001), 405–425. · Zbl 0986.14026
[4] D. J. Benson, Representations and Cohomology , I: Basic Representation Theory of Finite Groups and Associative Algebras , Cambridge Stud. Adv. Math. 30 , Cambridge Univ. Press, Cambridge, 1991. · Zbl 0718.20001
[5] -, Representations and Cohomology , II: Cohomology of Groups and Modules , Cambridge Stud. Adv. Math. 31 , Cambridge Univ. Press, Cambridge, 1991. · Zbl 0731.20001
[6] D. J. Benson, J. F. Carlson, and J. Rickard, Complexity and varieties for infinitely generated modules, I , Math. Proc. Cambridge Philos. Soc. 118 (1995), 223–243. · Zbl 0848.20003 · doi:10.1017/S0305004100073618
[7] -, Complexity and varieties for infinitely generated modules, II , Math. Proc. Cambridge Philos. Soc. 120 (1996), 597–615. · Zbl 0888.20003 · doi:10.1017/S0305004100001584
[8] -, Thick subcategories of the stable module category , Fund. Math. 153 (1997), 59–80. · Zbl 0886.20007
[9] J. F. Carlson, The varieties and the cohomology ring of a module , J. Algebra 85 (1983), 104–143. · Zbl 0526.20040 · doi:10.1016/0021-8693(83)90121-7
[10] -, The variety of an indecomposable module is connected , Invent. Math. 77 (1984), 291–299. · Zbl 0543.20032 · doi:10.1007/BF01388448
[11] J. F. Carlson, P. W. Donovan, and W. W. Wheeler, Complexity and quotient categories for group algebras , J. Pure Appl. Algebra 93 (1994), 147–167. · Zbl 0811.20002 · doi:10.1016/0022-4049(94)90109-0
[12] L. G. Chouinard, Projectivity and relative projectivity over group rings , J. Pure Appl. Algebra 7 (1976), 287–302. · Zbl 0327.20020 · doi:10.1016/0022-4049(76)90055-4
[13] E. C. Dade, Endo-permutation modules over \(p\)-groups, II , Ann. of Math. (2) 108 (1978), 317–346. JSTOR: · Zbl 0404.16003 · doi:10.2307/1971169
[14] C. G. Faith and E. A. Walker, Direct-sum representations of injective modules , J. Algebra 5 (1967) 203–221. · Zbl 0173.03203 · doi:10.1016/0021-8693(67)90035-X
[15] E. M. Friedlander and J. Pevtsova, Representation-theoretic support spaces for finite group schemes , Amer. J. Math. 127 (2005), 379–420.; Erratum, Amer. J. Math. 128 (2006), 1067–1068. \(\!\); Mathematical Reviews (MathSciNet): · Zbl 1072.20009 · doi:10.1353/ajm.2005.0010
[16] E. M. Friedlander, J. Pevtsova, and A. Suslin, Generic and maximal Jordan types , Invent. Math. 168 (2007) 485–522. · Zbl 1117.14047 · doi:10.1007/s00222-007-0037-2
[17] E. M. Friedlander and A. Suslin, Cohomology of finite group scheme over a field , Invent. Math. 127 (1997), 209–270. · Zbl 0945.14028 · doi:10.1007/s002220050119
[18] M. Hovey and J. H. Palmieri, Galois theory of thick subcategories in modular representation theory , J. Algebra 230 (2000), 713–729. · Zbl 0962.20006 · doi:10.1006/jabr.2000.8347
[19] -, Stably thick subcategories of modules over Hopf algebras , Math. Proc. Cambridge Philos. Soc. 3 (2001), 441–474. · Zbl 0998.16029 · doi:10.1017/S0305004101005060
[20] M. Hovey, J. H. Palmieri, and N. P. Strickland, Axiomatic Stable Homotopy Theory , Mem. Amer. Math. Soc. 128 (1997), no. 610. · Zbl 0881.55001
[21] J. C. Jantzen, Representations of Algebraic Groups , Pure Appl. Math. 131 , Academic Press, Boston, 1987. · Zbl 0654.20039
[22] J. Pevtsova, Infinite dimensional modules for Frobenius kernels , J. Pure Appl. Algebra 173 (2002), 59–86. · Zbl 1006.20035 · doi:10.1016/S0022-4049(01)00168-2
[23] -, “Support cones for infinitesimal group schemes” in Hopf Algebras (Chicago, 2002) , Lect. Notes in Pure and Appl. Math. 237 , Dekker, New York, 2004, 203–213.
[24] D. Quillen, The spectrum of an equivariant cohomology ring, I , Ann. of Math. (2) 94 (1971), 549–572.; II , Ann. of Math. (2) 94 , 573–602. JSTOR: · Zbl 0247.57013 · doi:10.2307/1970770
[25] -, On the cohomology and K-theory of the general linear groups over a finite field , Ann. of Math. (2) 96 (1972), 552–586. JSTOR: · Zbl 0249.18022 · doi:10.2307/1970825
[26] J. Rickard, Idempotent modules in the stable category , J. London Math. Soc. (2) 56 (1997), 149–170. · Zbl 0910.20034 · doi:10.1112/S0024610797005309
[27] A. Suslin, Detection theorem for finite group schemes , J. Pure Appl. Algebra 206 (2006), 189–221. · Zbl 1095.14044 · doi:10.1016/j.jpaa.2005.03.017
[28] A. Suslin, E. M. Friedlander, and C. P. Bendel, Infinitesimal \(1\)-parameter subgroups and cohomology , J. Amer. Math. Soc. 10 (1997), 693–728. JSTOR: · Zbl 0960.14023 · doi:10.1090/S0894-0347-97-00240-3
[29] -, Support varieties for infinitesimal group schemes , J. Amer. Math. Soc. 10 (1997), 729–759. JSTOR: · Zbl 0960.14024 · doi:10.1090/S0894-0347-97-00239-7
[30] R. W. Thomason, The classification of triangulated subcategories , Compositio Math. 105 (1997), 1–27. · Zbl 0873.18003 · doi:10.1023/A:1017932514274
[31] W. C. Waterhouse, Introduction to Affine Group Schemes , Grad. Texts in Math. 66 Springer, New York, 1979. · Zbl 0442.14017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.