×

The convergence of Fourier series in eigenfunctions of the Schrödinger operator with Kato potential. (English. Russian original) Zbl 1128.35314

Math. Notes 67, No. 5, 639-645 (2000); translation from Mat. Zametki 67, No. 5, 755-763 (2000).
Summary: We obtain sharp conditions for the absolute uniform convergence of Fourier series in the eigenfunctions of the Schrödinger operator with Kato potential in a bounded domain for functions lying in the domains of generalized fractional powers of the original Schrödinger operator or in generalized Besov classes with a sharp exponent.

MSC:

35J10 Schrödinger operator, Schrödinger equation
35C10 Series solutions to PDEs
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
Full Text: DOI

References:

[1] T. Kato, ”Schrödinger operators with singular potentials,”Isr. J. Math.,13, 135–148 (1972). · Zbl 0246.35025 · doi:10.1007/BF02760233
[2] H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon,Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer-Verlag, Berlin-New York (1987). · Zbl 0619.47005
[3] M. Reed and B. Simon,Methods of Modern Mathematical Physics, Vol. 2, Academic Press, New York-London (1975). · Zbl 0308.47002
[4] F. Riesz and B. Sz.-Nagy,Leçons d’analyse fonctionnelle, Gauthier-Villars, Paris and Akademiai Kiado, Budapest (1965).
[5] V. A. Il’in,Spectral Theory of Differential Operators [in Russian], Nauka, Moscow (1991).
[6] S. A. Alimov and I. Joo, ”On the Riesz summability of eigenfunction expansions,”Acta Sci. Math.,45, 5–18 (1983). · Zbl 0554.35030
[7] S. A. Alimov and I. Joo, ”On eigenfunction expansions connected with the Schrödinger operator,”Acta Sci. Math.,48, 5–12 (1985).
[8] A. R. Khalmukhamedov, ”Convergence of spectral expansions for a singular operator,”Differentsial’nye Uravneniya [Differential Equations],22, No. 12, 2107–2117 (1986). · Zbl 0637.35059
[9] A. R. Khalmukhamedov, ”Eigenfunction expansions for the Schrödinger operator with a singular potential,”Differentsial’ nye Uravneniya [Differential Equations],20, No. 9, 1642–1645 (1984). · Zbl 0567.35066
[10] R. R. Ashurov, ”Asymptotics of the spectral function of the Schrödinger operator with a potentialq {\(\epsilon\)}L 2(\(\mathbb{R}\)3),”Differentsial’nye Uravneniya [Differential Equations],23, No. 1, 169–172 (1987). · Zbl 0652.35092
[11] V. S. Serov, ”The absolute convergence of spectral expansions for operators with singularities,”Differentsial’nye Uravneniya [Differential Equations],28, No. 1, 127–136 (1992). · Zbl 0762.35071
[12] V. S. Serov, ”Spectral expansions of functions inH p {\(\alpha\)} for a differential operator with a singularity on a surface,”Dokl. Ross. Akad. Nauk [Russian Acad. Sci. Dokl. Math.],340, No. 1, 26–28 (1995). · Zbl 0879.35117
[13] V. S. Serov, ”Generalized fractional-order kernels,”Differentsial’nye Uravneniya [Differential Equations],12, No. 10, 1892–1902 (1976).
[14] V. S. Serov, ”The fundamental solution of a differential operator with a singularity,”Differentisal’nye Uravneniya [Differential Equations],23, No. 3, 531–534 (1987). · Zbl 0647.35022
[15] V. S. Serov, ”Interpolation of Besov classes and the absolute convergence of Fourier series,”Differentsial’nye Uravneniya [Differential Equations],25, No. 1, 174–176 (1989). · Zbl 0698.42004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.