[1] |
M. Dehghan, M. Jaberi Douraki, Dynamics of a rational difference equation using both theoretical and computational approaches, Applied Mathematics and Computation, in press, doi: 10.1016/j.amc.2004.09.009. · Zbl 1085.39006 |

[2] |
Dehghan, M.; Saadatmandi, A.: Bounds for solutions of a six-point partial-difference scheme. Computers and mathematics with applications 47, 83-89 (2004) · Zbl 1054.65094 |

[3] |
Devault, R.; Kosmala, W.; Ladas, G.; Schaultz, S. W.: Global behavior of xn+1=p+yn-kqyn+yn-k. Nonlinear analysis, theory, methods & applications 47, 4743-4751 (2001) · Zbl 1042.39523 |

[4] |
Franke, J. E.; Hong, J. T.; Ladas, G.: Global attractivity and convergence to the two-cycle in a difference equation. Journal of difference equations and applications 5, No. 2, 203-209 (1999) · Zbl 0927.39005 |

[5] |
Gibbons, C. H.; Kulenovic, M. R. S.; Ladas, G.: On the recursive sequence $xn+1=\alpha +\beta $xn$\gamma +xn$. Mathematical sciences research hot-line 4, No. 2, 1-11 (2000) · Zbl 1039.39004 |

[6] |
Jaroma, J. H.: On the global asymptotic stability of $xn+1=\alpha +\beta $xnA+Cxn-1. Proceedings of the first international conference on difference equations and applications, May 25-28, 1994, san antonio, TX, 281-294 (1995) |

[7] |
Kocic, V. L.; Ladas, G.: Global behavior of nonlinear difference equations of higher order with applications. (1993) · Zbl 0787.39001 |

[8] |
Kocic, V. L.; Ladas, G.; Rodrigues, I. W.: On the rational recursive sequences. Journal of mathematical analysis and applications 173, 127-157 (1993) · Zbl 0777.39002 |

[9] |
Kulenovic, M. R. S.; Ladas, G.: Dynamics of second order rational difference equations with open problems and conjectures. (2002) |

[10] |
Kulenovic, M. R. S.; Ladas, G.; Prokup, N. R.: On the recursive sequence $xn+1=\alpha xn+\beta $xn-11+xn. Journal of difference equations and applications 6, No. 5, 563-576 (2000) · Zbl 0966.39003 |

[11] |
Kuruklis, S. A.; Ladas, G.: Oscillation and global attractivity in a discrete delay logistic model. Quarterly of applied mathematics 50, 227-233 (1992) · Zbl 0799.39004 |

[12] |
Li, W. -T.; Sun, H. -R.: Dynamics of a rational difference equation. Applied mathematics and computation 163, No. 2, 577-591 (2005) · Zbl 1071.39009 |

[13] |
Papanicolaou, V. G.: On the asymptotic stability of a class of linear difference equations. Mathematics magazine 69, 34-43 (1996) · Zbl 0866.39001 |

[14] |
Sedaghat, H.: Geometric stability conditions for higher order difference equations. Journal of mathematical analysis and applications 224, 225-272 (1998) · Zbl 0911.39003 |

[15] |
Sedaghat, H.: Nonlinear difference equations, theory with applications to social science models. (2003) · Zbl 1020.39007 |

[16] |
M. Dehghan, M. Jaberi Douraki, On the recursive sequence xn+1=\alpha +\beta xn-k+1+\gamma xn-2k+1Bxn-k+1+Cxn-2k+1, Applied Mathematics and Computation, in press, doi: 10.1016/j.amc.2005.01.004. · Zbl 1090.39006 |

[17] |
M. Jaberi Douraki, The study of some classes of nonlinear difference equations, M.Sc. Thesis, Department of Applied Mathematics, Amirkabir University of Technology, July 2004, Tehran, Iran. |