zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Hille and Nehari type criteria for third-order dynamic equations. (English) Zbl 1128.39009
For the third order dynamic equation on an arbitrary time scale $T$ with $\sup T=\infty$, $$ x^{\Delta\Delta\Delta}(t)+p(t)x(t)=0 \eqno{(1)} $$ where $p(t)$ is a positive real-valued rd-continuous function defined on $T$, the authors consider its oscillatory properties. Several sufficient conditions are obtained for oscillation of all solutions of (1). The results given in this paper extend those established by {\it E. Hille} [Trans. Am. Math. Soc. 64, 234--252 (1948; Zbl 0031.35402)] and {\it Z. Nehari} [Trans. Am. Math. Soc. 85, 428--445 (1957; Zbl 0078.07602)] for second order differential equations. The oscillation criteria for (1) are new even for third order differential equations and the corresponding difference equations. Several examples illustrating the results are also given.

MSC:
39A12Discrete version of topics in analysis
34C10Qualitative theory of oscillations of ODE: zeros, disconjugacy and comparison theory
39A11Stability of difference equations (MSC2000)
WorldCat.org
Full Text: DOI
References:
[1] R. Agarwal, M. Bohner, S.H. Saker, Oscillation criteria for second order delay dynamic equation, Can. Appl. Math. Q., in press · Zbl 1126.39003
[2] Agarwal, R. P.; O’regan, D.; Saker, S. H.: Oscillation criteria for second-order nonlinear neutral delay dynamic equations. J. math. Anal. appl. 300, 203-217 (2004) · Zbl 1062.34068
[3] E. Akin-Bohner, M. Bohner, S.H. Saker, Oscillation for a certain of class of second order Emden -- Fowler dynamic equations, Electron. Trans. Numer. Anal., in press · Zbl 1177.34047
[4] Bohner, M.; Peterson, A.: Dynamic equations on time scales: an introduction with applications. (2001) · Zbl 0978.39001
[5] Bohner, M.; Peterson, A.: Advances in dynamic equations on time scales. (2003) · Zbl 1025.34001
[6] Bohner, M.; Saker, S. H.: Oscillation of second order nonlinear dynamic equations on time scales. Rocky mountain J. Math. 34, No. 4, 1239-1254 (2004) · Zbl 1075.34028
[7] Bohner, M.; Saker, S. H.: Oscillation criteria for perturbed nonlinear dynamic equations. Math. comput. Modelling 40, 249-260 (2004) · Zbl 1112.34019
[8] Erbe, L.: Existence of oscillatory solutions and asymptotic behavior for a class of third order linear differential equations. Pacific J. Math. 64, 369-385 (1976) · Zbl 0339.34030
[9] Erbe, L.; Peterson, A.; Saker, S. H.: Oscillation criteria for second-order nonlinear dynamic equations on time scales. J. London math. Soc. 76, 701-714 (2003) · Zbl 1050.34042
[10] Erbe, L.; Peterson, A.; Saker, S. H.: Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales. J. comput. Appl. math. 181, 92-102 (2005) · Zbl 1075.39010
[11] Erbe, L.; Peterson, A.; Saker, S. H.: Kamenev-type oscillation criteria for second-order linear delay dynamic equations. Dynam. systems appl. 15, 65-78 (2006) · Zbl 1104.34026
[12] L. Erbe, A. Peterson, S.H. Saker, Oscillation and asymptotic behavior of a third-order nonlinear dynamic equation, Can. Appl. Math. Q., in press · Zbl 1145.34329
[13] Hanan, M.: Oscillation criteria for third order differential equations. Pacific J. Math. 11, 919-944 (1961) · Zbl 0104.30901
[14] Hilger, S.: Analysis on measure chains --- a unified approach to continuous and discrete calculus. Results math. 18, 18-56 (1990) · Zbl 0722.39001
[15] Hille, E.: Non-oscillation theorems. Trans. amer. Math. soc. 64, 234-252 (1948) · Zbl 0031.35402
[16] Kac, V.; Cheung, P.: Quantum calculus. Universitext (2001) · Zbl 0986.05001
[17] Kelley, W.; Peterson, A.: Difference equations: an introduction with applications. (2001) · Zbl 0970.39001
[18] Lazar, A. C.: The behavior of solutions of the differential equation y‴+$p(x)y^{\prime}+q(x)$y=0. Pacific J. Math. 17, 435-466 (1966) · Zbl 0143.31501
[19] Leighton, W.: The detection of the oscillation of solutions of a second order linear differential equation. Duke J. Math. 17, 57-62 (1950) · Zbl 0036.06101
[20] Mehri, B.: On the conditions for the oscillation of solutions of nonlinear third order differential equations. Cas. pest math. 101, 124-129 (1976) · Zbl 0329.34028
[21] Nehari, Z.: Oscillation criteria for second-order linear differential equations. Trans. amer. Math. soc. 85, 428-445 (1957) · Zbl 0078.07602
[22] Saker, S. H.: Oscillation criteria of second-order half-linear dynamic equations on time scales. J. comput. Appl. math. 177, 375-387 (2005) · Zbl 1082.34032
[23] S.H. Saker, Oscillatory behavior of linear neutral delay dynamic equations on time scales, Kyungpook Math. J., in press · Zbl 1140.34414
[24] Saker, S. H.: Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. J. comput. Appl. math. 187, 123-141 (2006) · Zbl 1097.39003
[25] S.H. Saker, Oscillation criteria for a certain class of second-order neutral delay dynamic equations, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, in press · Zbl 1180.34067
[26] S.H. Saker, New oscillation criteria for second-order nonlinear dynamic equations on time scales, Nonlinear Funct. Anal. Appl., in press · Zbl 1126.34024
[27] S.H. Saker, On oscillation of second-order delay dynamic equations on time scales, Aust. J. Math. Anal. Appl., in press · Zbl 1147.34050
[28] S.H. Saker, Oscillation of second-order neutral delay dynamic equations of Emden -- Fowler type, Dynam. Systems Appl., in press · Zbl 1051.34052
[29] Spedding, V.: Taming nature’s numbers. (2003)