×

zbMATH — the first resource for mathematics

Multivalued \(f\)-weakly Picard mappings. (English) Zbl 1128.54024
By introducing the concept of multi-valued \(f\)-weak contraction and generalized multi-valued \(f\)-weak contraction, the author obtains two coincidence fixed point theorems which include, in particular, two common fixed point theorems. If \(f=I\), the identity map, one obtains the results co-authored by the reviewer: M. Berinde and V. Berinde [J. Math. Anal. Appl. 326, 772–782 (2007; Zbl 1117.47039)].

MSC:
54H25 Fixed-point and coincidence theorems (topological aspects)
47H10 Fixed-point theorems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Assad, N.A.; Kirk, W.A., Fixed point theorems for setvalued mappings of contractive type, Pacific J. math., 43, 553-562, (1972) · Zbl 0239.54032
[2] Berinde, V., Approximating fixed points of weak contractions using the Picard iteration, Nonlinear anal. forum, 9, 1, 43-53, (2004) · Zbl 1078.47042
[3] Berinde, V., Generalized contractions and applications, vol. 22, (1997), Cub Press Baia Mare, (in Romanian)
[4] V. Berinde, Iterative Approximation of Fixed Points, Editura Efemeride, Baia Mare, 2002
[5] Berinde, V., On approximation of fixed points of weak \(\phi\)-contractive operators, Fixed point theory, 4, 131-142, (2003)
[6] M. Berinde, V. Berinde, On general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl. (in press) · Zbl 1117.47039
[7] Chatterjea, S.K., Fixed point theorems, C. R. acad. bulgare sci., 25, 727-730, (1972) · Zbl 0274.54033
[8] Ciric, Lj.B., Fixed point theory, () · Zbl 1122.47044
[9] Daffer, P.Z.; Kaneko, H., Fixed points of generalized contractive multivalued mappings, J. math. anal. appl., 192, 655-666, (1995) · Zbl 0835.54028
[10] Dugundji, J.; Granas, A., Weakly contractive maps and elementary domain invariance theorem, Bull. Greek math. soc., 19, 141-151, (1978) · Zbl 0417.54010
[11] Kamran, T., Coincidence and fixed points for hybrid strict contractions, J. math. anal. appl., 299, 235-241, (2004) · Zbl 1064.54055
[12] Kamran, T., Fixed points of asymptotically regular noncompatible maps, Demonstratio math., XXXVIII, 485-494, (2005) · Zbl 1070.54020
[13] Mizoguchi, N.; Takahashi, W., Fixed point theorems for multivalued mappings on complete metric space, J. math. anal. appl., 141, 177-188, (1989) · Zbl 0688.54028
[14] Nadler, S.B., Multivalued contraction mappings, Pacific J. math., 30, 475-488, (1969) · Zbl 0187.45002
[15] Pant, R.P., Common fixed points of non-commuting mappings, J. math. anal. appl., 188, 436-440, (1994) · Zbl 0830.54031
[16] Pant, R.P., Common fixed point theorems for contractive maps, J. math. anal. appl., 226, 251-258, (1998) · Zbl 0916.54027
[17] Pathak, H.K.; Khan, M.S., Fixed and coincidence points of hybrid mappings, Arch. math. (Brno), 38, 201-208, (2002) · Zbl 1068.47073
[18] Petrusel, A., On frigon – granas-type multifunctions, Nonlinear anal. forum, 7, 113-121, (2002) · Zbl 1043.47036
[19] Reich, S., Kannan’s fixed point theorem, Boll. unione mat. ital., 4, 1-11, (1971) · Zbl 0219.54042
[20] Reich, S., A fixed point theorem for locally contractive multi-valued functions, Rev. roumaine math. pures appl., 17, 569-572, (1972) · Zbl 0239.54033
[21] Reich, S., Fixed points of contractive functions, Boll. unione mat. ital., 5, 26-42, (1972) · Zbl 0249.54026
[22] Reich, S., Some problems and results in fixed point theory, Contemp. math., 21, 179-187, (1983) · Zbl 0531.47048
[23] Rus, I.A., Generalized contractions and applications, (2001), Cluj University Press Cluj-Napoca · Zbl 0968.54029
[24] Rus, I.A.; Petrusel, A.; Sintamarian, A., Data dependence of fixed point set of some multi-valued weakly Picard operators, Nonlinear anal., 52, 1947-1959, (2003) · Zbl 1055.47047
[25] Sintamarian, A., Some pairs of multi-valued operators, Carpathian J. math., 21, 115-125, (2005) · Zbl 1101.47032
[26] Shahzad, N., Invariant approximation and \(R\)-subweakly commuting maps, J. math. anal. appl., 257, 39-45, (2001) · Zbl 0989.47047
[27] Shahzad, N., Coincidence points and \(R\)-subweakly commuting multivalued maps, Demonstratio math., 36, 427-431, (2003) · Zbl 1039.54023
[28] Singh, S.L.; Mishra, S.N., Coincidence and fixed points of nonself hybrid contractions, J. math. anal. appl., 256, 486-497, (2001) · Zbl 0985.47046
[29] Zamfirescu, T., Fix point theorems in metric spaces, Arch. math. (basel), 23, 292-298, (1972) · Zbl 0239.54030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.