zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Properties of local-nondeterminism of Gaussian and stable random fields and their applications. (English) Zbl 1128.60041
The author reviews various forms of local nondeterminism and sectorial local nondeterminism of random processes and fields. Gaussian and stable cases are considered. Sufficient spectral conditions for Gaussian random fields with stationary increments to be strongly locally nondeterministic are given. The author shows some applications in studying the law of the iterated logarithm, Hausdorff dimension and Hausdorff measure of sample paths, loacal times and level sets of Gaussian random fields.

MSC:
60G60Random fields
60G17Sample path properties
WorldCat.org
Full Text: DOI Numdam EuDML
References:
[1] Adler ( R. J. ) .- The Geometry of Random Fields , Wiley , 1981 MR 611857 | Zbl 0478.60059 · Zbl 0478.60059
[2] Addie ( R. ) , Mannersalo ( P. ) & Norros ( I. ) .- Performance formulae for queues with Gaussian input , European Trans. Telecommunications 13 , no. 3 , p. 183 - 196 ( 2002 ) [3] Anh ( V. V. ) , Angulo ( J. M. ) & Ruiz-Medina ( M. D. ) .- Possible long-range dependence in fractional random fields , J. Statist. Plann. Inference 80 , p. 95 - 110 ( 1999 ) MR 1713795 | Zbl 1039.62090 · Zbl 1039.62090 · doi:10.1016/S0378-3758(98)00244-4
[3] Ayache ( A. ) & Xiao ( Y. ) .- Asymptotic growth properties and Hausdorff dimension of fractional Brownian sheets , J. Fourier Anal. Appl. 11 , p. 407 - 439 ( 2005 ) MR 2169474 | Zbl 1088.60033 · Zbl 1088.60033 · doi:10.1007/s00041-005-4048-3
[4] Ayache ( A. ) , Wu ( D. ) & Xiao ( Y. ) .- Joint continuity of the local times of fractional Brownian sheets , In Preparation, 2005 [6] Benassi ( A. ) , Jaffard ( S. ) & Roux ( D. ) .- Elliptic Gaussian random processes , Rev. Mat. Iberoamericana 13 , p. 19 - 90 ( 1997 ) MR 1462329 | Zbl 0880.60053 · Zbl 0880.60053 · doi:10.4171/RMI/217 · eudml:39530
[5] Benson ( D. A. ) , Meerschaert ( M. M. ) & Baeumer ( B. ) .- Aquifer operator-scaling and the efferct on solute mixing and dispersion , Preprint, 2004 [8] Berg ( C. ) & Forst ( G. ) .- Potential Theory on Locally Compact Abelian Groups , Springer-Verlag , 1975 MR 481057 | Zbl 0308.31001 · Zbl 0308.31001
[6] Berman ( S. M. ) .- Local times and sample function properties of stationary Gaussian processes , Trans. Amer. Math. Soc. 137 , p. 277 - 299 ( 1969 ) MR 239652 | Zbl 0184.40801 · Zbl 0184.40801 · doi:10.2307/1994804
[7] Berman ( S. M. ) .- Gaussian processes with stationary increments: Local times and sample function properties , Ann. Math. Statist. 41 , p. 1260 - 1272 ( 1970 ) Article | MR 272035 | Zbl 0204.50501 · Zbl 0204.50501 · doi:10.1214/aoms/1177696901 · http://minidml.mathdoc.fr/cgi-bin/location?id=00234305
[8] Berman ( S. M. ) .- Gaussian sample function: uniform dimension and Hölder conditions nowhere , Nagoya Math. J. 46 , p. 63 - 86 ( 1972 ) Article | MR 307320 | Zbl 0246.60038 · Zbl 0246.60038 · http://minidml.mathdoc.fr/cgi-bin/location?id=00079032
[9] Berman ( S. M. ) .- Local nondeterminism and local times of Gaussian processes , Indiana Univ. Math. J. 23 , p. 69 - 94 ( 1973 ) MR 317397 | Zbl 0264.60024 · Zbl 0264.60024 · doi:10.1512/iumj.1973.23.23006
[10] Berman ( S. M. ) .- Gaussian processes with biconvex covariances , J. Multivar. Anal. 8 , p. 30 - 44 ( 1978 ) MR 517591 | Zbl 0373.60050 · Zbl 0373.60050 · doi:10.1016/0047-259X(78)90017-9
[11] Berman ( S. M. ) .- Spectral conditions for local nondeterminism , Stochastic Process. Appl. 27 , p. 160 - 191 ( 1988 ) MR 934530 | Zbl 0633.60055 · Zbl 0633.60055 · doi:10.1016/0304-4149(87)90006-8
[12] Berman ( S. M. ) .- Self-intersections and local nondeterminism of Gaussian processes , Ann. Probab. 19 , p. 160 - 191 ( 1991 ) Article | MR 1085331 | Zbl 0728.60037 · Zbl 0728.60037 · doi:10.1214/aop/1176990539 · http://minidml.mathdoc.fr/cgi-bin/location?id=00238947
[13] Bingham ( N. H. ) , Goldie ( C. M. ) & Teugels ( J. L. ) .- Regular Variation , Cambridge University Press , 1987 MR 898871 | Zbl 0617.26001 · Zbl 0617.26001
[14] Bonami ( A. ) & Estrade ( A. ) .- Anisotropic analysis of some Gaussian models , J. Fourier Anal. Appl. 9 , p. 215 - 236 ( 2003 ) MR 1988750 | Zbl 1034.60038 · Zbl 1034.60038 · doi:10.1007/s00041-003-0012-2
[15] Cambanis ( S. ) & Maejima ( M. ) .- Two classes of selfsimilar stable processes with stationary increments , Stochastic Process. Appl. 32 , p. 305 - 329 ( 1989 ) MR 1014456 | Zbl 0713.60050 · Zbl 0713.60050 · doi:10.1016/0304-4149(89)90082-3
[16] Cheridito ( P. ) .- Gaussian moving averages, semimartingales and option pricing , Stochastic Process. Appl. 109 , p. 47 - 68 ( 2004 ) MR 2024843 | Zbl 1075.60025 · Zbl 1075.60025 · doi:10.1016/j.spa.2003.08.002
[17] Csörgő ( M. ) , Lin ( Z.-Y. ) & Shao ( Q.-M. ) .- On moduli of continuity for local times of Gaussian processes , Stochastic Process. Appl. 58 , p. 1 - 21 ( 1995 ) MR 1341551 | Zbl 0834.60088 · Zbl 0834.60088 · doi:10.1016/0304-4149(94)00012-I
[18] Cuzick ( J. ) .- Conditions for finite moments of the number of zero crossings for Gaussian processes , Ann. Probab. 3 , p. 849 - 858 ( 1975 ) Article | MR 388515 | Zbl 0328.60023 · Zbl 0328.60023 · doi:10.1214/aop/1176996271 · http://minidml.mathdoc.fr/cgi-bin/location?id=00240526
[19] Cuzick ( J. ) .- A lower bound for the prediction error of stationary Gaussian processes , Indiana Univ. Math. J. 26 , p. 577 - 584 ( 1977 ) MR 438452 | Zbl 0367.60040 · Zbl 0367.60040 · doi:10.1512/iumj.1977.26.26045
[20] Cuzick ( J. ) .- Local nondeterminism and the zeros of Gaussian processes , Ann. Probab. 6 , p. 72 - 84 ( 1978 ) Article | MR 488252 | Zbl 0374.60051 · Zbl 0374.60051 · doi:10.1214/aop/1176995611 · http://minidml.mathdoc.fr/cgi-bin/location?id=00240265
[21] Cuzick ( J. ) .- Multiple points of a Gaussian vector field , Z. Wahrsch. Verw. Gebiete 61 , no. 4 , p. 431 - 436 ( 1982a ) MR 682570 | Zbl 0504.60052 · Zbl 0504.60052 · doi:10.1007/BF00531614
[22] Cuzick ( J. ) .- Continuity of Gaussian local times , Ann. Probab. 10 , p. 818 - 823 ( 1982b ) Article | MR 659551 | Zbl 0492.60033 · Zbl 0492.60033 · doi:10.1214/aop/1176993790 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239830
[23] Cuzick ( J. ) & DuPreez ( J. ) .- Joint continuity of Gaussian local times , Ann. Probab. 10 , p. 810 - 817 ( 1982 ) Article | MR 659550 | Zbl 0492.60032 · Zbl 0492.60032 · doi:10.1214/aop/1176993789 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239829
[24] Doukhan ( P. ) , Oppenheim ( G. ) & Taqqu ( M. S. ) .- Theory and Applications of Long-range Dependence , Birkhäuser Boston, Inc., , 2003 MR 1956041 | Zbl 1005.00017 · Zbl 1005.00017
[25] Dozzi ( M. ) .- Occupation density and sample path properties of ${N}$-parameter processes , Topics in Spatial Stochastic Processes (Martina Franca, 2001), Lecture Notes in Math. , Springer , 2003 MR 1975519 | Zbl 1042.60031 · Zbl 1042.60031
[26] Dozzi ( M. ) & Soltani ( A. R. ) .- Local time for stable moving average processes: Hölder conditions , Stoch. Process. Appl. 68 , p. 195 - 207 ( 1997 ) MR 1454832 | Zbl 0914.60051 · Zbl 0914.60051 · doi:10.1016/S0304-4149(97)00015-X
[27] Ehm ( W. ) .- Sample function properties of multi-parameter stable processes , Z. Wahrsch. verw Gebiete 56 , p. 195 - 228 ( 1981 ) MR 618272 | Zbl 0471.60046 · Zbl 0471.60046 · doi:10.1007/BF00535741
[28] Eisenbaum ( N. ) & Khoshnevisan ( D. ) .- On the most visited sites of symmetric Markov processes , Stoch. Process. Appl. 101 , p. 241 - 256 ( 2002 ) MR 1931268 | Zbl 1075.60552 · Zbl 1075.60552 · doi:10.1016/S0304-4149(02)00128-X
[29] Geman ( D. ) & Horowitz ( J. ) .- Occupation densities , Ann. Probab. 8 , p. 1 - 67 ( 1980 ) Article | MR 556414 | Zbl 0499.60081 · Zbl 0499.60081 · doi:10.1214/aop/1176994824 · http://minidml.mathdoc.fr/cgi-bin/location?id=00240077
[30] Geman ( D. ) , Horowitz ( J. ) & Rosen ( J. ) .- A local time analysis of intersections of Brownian paths in the plane , Ann. Probab. 12 , p. 86 - 107 ( 1984 ) Article | MR 723731 | Zbl 0536.60046 · Zbl 0536.60046 · doi:10.1214/aop/1176993375 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239658
[31] Hardin Jr. ( C. D. ) .- On the spectral representation of symmetric stable processes , J. Multivar. Anal. 12 , p. 385 - 401 ( 1982 ) MR 666013 | Zbl 0493.60046 · Zbl 0493.60046 · doi:10.1016/0047-259X(82)90073-2
[32] Herbin ( E. ) .- From ${N}$ parameter fractional Brownian motions to ${N}$ parameter multifractional Brownian motions , Rocky Mount. J. Math., to appear, 2004 arXiv | Zbl 1135.60020 · Zbl 1135.60020 · doi:10.1216/rmjm/1181069415 · euclid:rmjm/1181069415
[33] Hu ( Y. ) , Øksendal ( B. ) & Zhang ( T. ) .- Stochastic partial differential equations driven by multiparameter fractional white noise , Stochastic Processes, Physics and Geometry: new interplays, II, Amer. Math. Soc. , 2000 MR 1803426 | Zbl 0982.60054 · Zbl 0982.60054
[34] Kahane ( J.-P. ) .- Some Random Series of Functions , Cambridge University Press , 1985 MR 833073 | Zbl 0571.60002 · Zbl 0571.60002
[35] Kasahara ( Y. ) & Ogawa ( N. ) .- A note on the local time of fractional Brownian motion , J. Theoret. Probab. 12 , p. 207 - 216 ( 1999 ) MR 1674996 | Zbl 0921.60068 · Zbl 0921.60068 · doi:10.1023/A:1021756929498
[36] Kasahara ( Y. ) , Kôno ( N. ) & Ogawa ( T. ) .- On tail probability of local times of Gaussian processes , Stochastic Process 82 , p. 15 - 21 ( 1999 ) MR 1695067 | Zbl 0997.60037 · Zbl 0997.60037 · doi:10.1016/S0304-4149(99)00011-3
[37] Khoshnevisan ( D. ) .- Multiparameter Processes: An Introduction to Random Fields , Springer , 2002 MR 1914748 | Zbl 1005.60005 · Zbl 1005.60005 · doi:10.1007/b97363
[38] Khoshnevisan ( D. ) , Wu ( D. ) & Xiao ( Y. ) .- Sectorial local nondeterminism and the geometry of the Brownian sheet , Submitted, 2005 [42] Khoshnevisan ( D. ) & Xiao ( Y. ) .- Level sets of additive Lévy processes , Ann. Probab. 30 , p. 62 - 100 ( 2002 ) Article | MR 1894101 | Zbl 1019.60049 · Zbl 1019.60049 · doi:10.1214/aop/1020107761 · http://minidml.mathdoc.fr/cgi-bin/location?id=00001458
[39] Khoshnevisan ( D. ) & Xiao ( Y. ) .- Weak unimodality of finite measures, and an application to potential theory of additive Lévy processes , Proc. Amer. Math. Soc. 131 , p. 2611 - 2616 ( 2003 ) MR 1974662 | Zbl 1012.60053 · Zbl 1012.60053 · doi:10.1090/S0002-9939-02-06778-3
[40] Khoshnevisan ( D. ) & Xiao ( Y. ) .- Additive Levy processes: capacity and Hausdorff dimension , Progress in Probability, 57 , Birkhäuser , 2004a , p. 151 - 170 MR 2087138 | Zbl 1065.60101 · Zbl 1065.60101
[41] Khoshnevisan ( D. ) & Xiao ( Y. ) .- Images of the Brownian sheet , Trans. Amer. Math. Soc., to appear, 2004b arXiv | Zbl 1124.60037 · Zbl 1124.60037 · doi:10.1090/S0002-9947-07-04073-1 · http://minidml.mathdoc.fr/cgi-bin/location?id=00048923
[42] Khoshnevisan ( D. ) , Xiao ( Y. ) & Zhong ( Y. ) .- Local times of additive Lévy processes , Stoch. Process. Appl. 104 , p. 193 - 216 ( 2003a ) MR 1961619 | Zbl 1075.60520 · Zbl 1075.60520 · doi:10.1016/S0304-4149(02)00237-5
[43] Khoshnevisan ( D. ) , Xiao ( Y. ) & Zhong ( Y. ) .- Measuring the range of an additive Lévy processes , Ann. Probab. 31 , p. 1097 - 1141 ( 2003b ) Article | MR 1964960 | Zbl 1039.60048 · Zbl 1039.60048 · doi:10.1214/aop/1048516547 · http://minidml.mathdoc.fr/cgi-bin/location?id=00001872
[44] Kokoszka ( P. S. ) & Taqqu ( M. S. ) .- New classes of self-similar symmetric stable random fields , J. Theoret. Probab. 7 , p. 527 - 549 ( 1994 ) MR 1284651 | Zbl 0806.60026 · Zbl 0806.60026 · doi:10.1007/BF02213567
[45] Kôno ( N. ) .- On the modulus of continuity of sample functions of Gaussian processes , J. Math. Kyoto Univ. 10 , p. 493 - 536 ( 1970 ) Article | MR 283867 | Zbl 0205.44503 · Zbl 0205.44503 · http://minidml.mathdoc.fr/cgi-bin/location?id=00354083
[46] Kôno ( N. ) .- Kallianpur-Robbins law for fractional Brownian motion , Probability theory and mathematical statistics, World Sci. Publishing , 1996 MR 1467943 | Zbl 0959.60079 · Zbl 0959.60079
[47] Kôno ( N. ) & Shieh ( N.-R. ) .- Local times and related sample path properties of certain self-similar processes , J. Math. Kyoto Univ. 33 , p. 51 - 64 ( 1993 ) Article | MR 1203890 | Zbl 0776.60054 · Zbl 0776.60054 · http://minidml.mathdoc.fr/cgi-bin/location?id=00354969
[48] Kuelbs ( J. ) , Li ( W. V. ) & Shao ( Q.-M. ) .- Small ball probabilities for Gaussian processes with stationary increments under Hölder norms , J. Theoret. Probab. 8 , p. 361 - 386 ( 1995 ) MR 1325856 | Zbl 0820.60023 · Zbl 0820.60023 · doi:10.1007/BF02212884
[49] Li ( W. V. ) & Shao ( Q.-M. ) .- Gaussian processes: inequalities, small ball probabilities and applications , Stochastic Processes: Theory and Methods, Handbook of Statistics 19 , North-Holland , 2001 MR 1861734 | Zbl 0987.60053 · Zbl 0987.60053
[50] Lifshits ( M. A. ) .- Asymptotic behavior of small ball probabilities , Probab. Theory and Math. Statist., 1999 , p. 533 - 597 [55] Lin ( H.-N. ) .- Uniform dimension results of multi-parameter stable processes , Sci. China Ser. A 42 , p. 932 - 944 ( 1999 ) MR 1736584 | Zbl 0956.60032 · Zbl 0956.60032 · doi:10.1007/BF02880385
[51] Lin ( S. J. ) .- Stochastic analysis of fractional Brownian motion , Stochastics and Stochastic Rep. 55 , p. 121 - 140 ( 1995 ) MR 1382288 | Zbl 0886.60076 · Zbl 0886.60076
[52] Maejima ( M. ) .- On a class of selfsimilar stable processes , Z. Wahrsch. verw Gebiete 62 , p. 235 - 245 ( 1983 ) MR 688988 | Zbl 0488.60004 · Zbl 0488.60004 · doi:10.1007/BF00538799
[53] Mandelbrot ( B. B. ) & Van Ness ( J. W. ) .- Fractional Brownian motions, fractional noises and applications , SIAM Review 10 , p. 422 - 437 ( 1968 ) MR 242239 | Zbl 0179.47801 · Zbl 0179.47801 · doi:10.1137/1010093
[54] Mannersalo ( P. ) & Norros ( I. ) .- A most probable path approach to queueing systems with general Gaussian input , Comp. Networks 40 , no. 3 , p. 399 - 412 ( 2002 ) [60] Marcus ( M. B. ) .- Gaussian processes with stationary increments possessing discontinuous sample paths , Pac. J. Math. 26 , p. 149 - 157 ( 1968a ) Article | MR 236985 | Zbl 0245.60035 · Zbl 0245.60035 · doi:10.2140/pjm.1968.26.149 · http://minidml.mathdoc.fr/cgi-bin/location?id=00074478
[55] Marcus ( M. B. ) .- Hölder conditions for Gaussian processes with stationary increments , Trans. Amer. Math. Soc. 134 , p. 29 - 52 ( 1968b ) MR 230368 | Zbl 0186.50602 · Zbl 0186.50602 · doi:10.2307/1994825
[56] Mason ( D. J. ) & Xiao ( Y. ) .- Sample path properties of operator self-similar Gaussian random fields , Th. Probab. Appl. 46 , p. 58 - 78 ( 2002 ) MR 1968707 | Zbl 0993.60039 · Zbl 0993.60039 · doi:10.1137/S0040585X97978749
[57] Miroshin ( R. ) .- Conditions of local nondeterminism of differentiable Gaussian stationary processes , Th. Probab. Appl. 22 , p. 831 - 836 ( 1977 ) Zbl 0388.60038 · Zbl 0388.60038 · doi:10.1137/1122096
[58] Monrad ( D. ) & Pitt ( L. D. ) .- Local nondeterminism and Hausdorff dimension , Progress in Probability and Statistics. Seminar on Stochastic Processes 1986, Birkhauser , 1987 MR 902433 | Zbl 0616.60049 · Zbl 0616.60049
[59] Monrad ( D. ) & Rootzén ( H. ) .- Small values of Gaussian processes, functional laws of the iterated logarithm , Probab. Th. Rel. Fields 101 , p. 173 - 192 ( 1995 ) MR 1318191 | Zbl 0821.60043 · Zbl 0821.60043 · doi:10.1007/BF01375823
[60] Mountford ( T. S. ) .- An extension of a result of Kahane using Brownian local times of intersection , Stochastics 23 , p. 449 - 464 ( 1988 ) MR 943815 | Zbl 0645.60086 · Zbl 0645.60086 · doi:10.1080/17442508808833504
[61] Mountford ( T. S. ) .- Uniform dimension results for the Brownian sheet , Ann. Probab. 17 , p. 1454 - 1462 ( 1989 ) Article | MR 1048937 | Zbl 0695.60077 · Zbl 0695.60077 · doi:10.1214/aop/1176991165 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239077
[62] Mountford ( T. S. ) .- Level sets of multiparameter stable processes , Preprint, 2004 [69] Mountford ( T. ) & Nualart ( E. ) .- Level sets of multiparameter Brownian motions , Electron. J. Probab. 9 , no. 20 , p. 594 - 614 ( 2004 ) MR 2080611 | Zbl 1064.60109 · Zbl 1064.60109 · emis:journals/EJP-ECP/_ejpecp/EjpVol9/paper20.abs.html · eudml:124735
[63] Mueller ( C. ) & Tribe ( R. ) .- Hitting properties of a random string , Electron. J. Probab. 7 , no. 10 , ( 2002 ) MR 1902843 | Zbl 1010.60059 · Zbl 1010.60059 · emis:journals/EJP-ECP/EjpVol7/paper10.abs.html · eudml:122584
[64] Nolan ( J. ) .- Path properties of index-$\beta $ stable fields , Ann. Probab. 16 , p. 1596 - 1607 ( 1988 ) Article | MR 958205 | Zbl 0673.60043 · Zbl 0673.60043 · doi:10.1214/aop/1176991586 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239182
[65] Nolan ( J. ) .- Local nondeterminism and local times for stable processes , Probab. Th. Rel. Fields 82 , p. 387 - 410 ( 1989 ) MR 1001520 | Zbl 0659.60106 · Zbl 0659.60106 · doi:10.1007/BF00339994
[66] Orey ( S. ) & Pruitt ( W. E. ) .- Sample functions of the ${N}$-parameter Wiener process , Ann. Probab. 1 , p. 138 - 163 ( 1973 ) Article | MR 346925 | Zbl 0284.60036 · Zbl 0284.60036 · doi:10.1214/aop/1176997030 · http://minidml.mathdoc.fr/cgi-bin/location?id=00240819
[67] Øksendal ( B. ) & Zhang ( T. ) .- Multiparameter fractional Brownian motion and quasi-linear stochastic partial differential equations , Stochastics and Stochastics Reports 71 , p. 141 - 163 ( 2000 ) MR 1922562 | Zbl 0986.60056 · Zbl 0986.60056
[68] Pitman ( E. J. G. ) .- On the behavior of the characteristic function of a probability sidtribution in the neighbourhood of the origin , J. Australian Math. Soc. Series A 8 , p. 422 - 443 ( 1968 ) MR 231423 | Zbl 0164.48502 · Zbl 0164.48502 · doi:10.1017/S1446788700006121
[69] Pitt ( L. D. ) .- Stationary Gaussian Markov fields on ${R}^{d}$ with a deterministic component , J. Multivar. Anal. 5 , p. 300 - 311 ( 1975 ) MR 410883 | Zbl 0317.60016 · Zbl 0317.60016 · doi:10.1016/0047-259X(75)90048-2
[70] Pitt ( L. D. ) .- Local times for Gaussian vector fields , Indiana Univ. Math. J. 27 , p. 309 - 330 ( 1978 ) MR 471055 | Zbl 0382.60055 · Zbl 0382.60055 · doi:10.1512/iumj.1978.27.27024
[71] Pitt ( L. D. ) & Tran ( L. T. ) .- Local sample path properties of Gaussian fields , Ann. Probab. 7 , p. 477 - 493 ( 1979 ) Article | MR 528325 | Zbl 0401.60035 · Zbl 0401.60035 · doi:10.1214/aop/1176995048 · http://minidml.mathdoc.fr/cgi-bin/location?id=00240146
[72] Rogers ( L. C. G. ) .- Arbitrage with fractional Brownian motion , Math. Finance 7 , p. 95 - 105 ( 1997 ) MR 1434408 | Zbl 0884.90045 · Zbl 0884.90045 · doi:10.1111/1467-9965.00025
[73] Rosen ( J. ) .- Self-intersections of random fields , Ann. Probab. 12 , p. 108 - 119 ( 1984 ) Article | MR 723732 | Zbl 0536.60066 · Zbl 0536.60066 · doi:10.1214/aop/1176993376 · http://minidml.mathdoc.fr/cgi-bin/location?id=00239659
[74] Shao ( Q.-M. ) & Wang ( D. ) .- Small ball probabilities of Gaussian fields , Probab. Th. Rel. Fields 102 , p. 511 - 517 ( 1995 ) MR 1346263 | Zbl 0833.60043 · Zbl 0833.60043 · doi:10.1007/BF01198847
[75] Shieh ( N.-R. ) .- Multiple points of fractional stable processes , J. Math. Kyoto Univ. 33 , p. 731 - 741 ( 1993 ) Article | MR 1239089 | Zbl 0796.60047 · Zbl 0796.60047 · http://minidml.mathdoc.fr/cgi-bin/location?id=00355001
[76] Shieh ( N.-R. ) & Xiao ( Y. ) .- Images of Gaussian random fields: Salem sets and interior points , Submitted, 2004 [84] Samorodnitsky ( G. ) & Taqqu ( M. S. ) .- Stable non-Gaussian Random Processes: Stochastic models with infinite variance , Chapman & Hall , 1994 MR 1280932 | Zbl 0925.60027 · Zbl 0925.60027
[77] Stolz ( W. ) .- Some small ball probabilities for Gaussian processes under nonuniform norms , J. Theoret. Probab. 9 , p. 613 - 630 ( 1996 ) MR 1400590 | Zbl 0855.60039 · Zbl 0855.60039 · doi:10.1007/BF02214078
[78] Talagrand ( M. ) .- New Gaussian estimates for enlarged balls , Geometric and Funt. Anal. 3 , p. 502 - 526 ( 1993 ) Article | MR 1233864 | Zbl 0815.46021 · Zbl 0815.46021 · doi:10.1007/BF01896240 · eudml:58145
[79] Talagrand ( M. ) .- Hausdorff measure of trajectories of multiparameter fractional Brownian motion , Ann. Probab. 23 , p. 767 - 775 ( 1995 ) Article | MR 1334170 | Zbl 0830.60034 · Zbl 0830.60034 · doi:10.1214/aop/1176988288 · http://minidml.mathdoc.fr/cgi-bin/location?id=00238522
[80] Talagrand ( M. ) .- Multiple points of trajectories of multiparameter fractional Brownian motion , Probab. Th. Rel. Fields 112 , p. 545 - 563 ( 1998 ) MR 1664704 | Zbl 0928.60026 · Zbl 0928.60026 · doi:10.1007/s004400050200
[81] Taqqu ( M. S. ) & Wolpert ( R. ) .- Infinite variance selfsimilar processes subordinate to a Poisson measure , Z. Wahrsch. verw Gebiete 62 , p. 53 - 72 ( 1983 ) MR 684209 | Zbl 0488.60066 · Zbl 0488.60066 · doi:10.1007/BF00532163
[82] Wu ( D. ) & Xiao ( Y. ) .- Geometric properties of the images of fractional Brownian sheets , Preprint, 2005 [91] Xiao ( Y. ) .- Dimension results for Gaussian vector fields and index-$\alpha $ stable fields , Ann. Probab. 23 , p. 273 - 291 ( 1995 ) Article | MR 1330771 | Zbl 0834.60040 · Zbl 0834.60040 · doi:10.1214/aop/1176988387 · http://minidml.mathdoc.fr/cgi-bin/location?id=00238546
[83] Xiao ( Y. ) .- Hausdorff measure of the sample paths of Gaussian random fields , Osaka J. Math. 33 , p. 895 - 913 ( 1996 ) MR 1435460 | Zbl 0872.60030 · Zbl 0872.60030
[84] Xiao ( Y. ) .- Hölder conditions for the local times and the Hausdorff measure of the level sets of Gaussian random fields , Probab. Th. Rel. Fields 109 , p. 129 - 157 ( 1997a ) MR 1469923 | Zbl 0882.60035 · Zbl 0882.60035 · doi:10.1007/s004400050128
[85] Xiao ( Y. ) .- Weak variation of Gaussian processes , J. Theoret. Probab. 10 , p. 849 - 866 ( 1997b ) MR 1481651 | Zbl 0890.60035 · Zbl 0890.60035 · doi:10.1023/A:1022606431629
[86] Xiao ( Y. ) .- Hausdorff measure of the graph of fractional Brownian motion , Math. Proc. Camb. Philos. Soc. 122 , p. 565 - 576 ( 1997c ) MR 1466658 | Zbl 0897.60043 · Zbl 0897.60043 · doi:10.1017/S0305004197001783
[87] Xiao ( Y. ) .- The packing measure of the trajectories of multiparameter fractional Brownian motion , Math. Proc. Camb. Philo. Soc. 135 , p. 349 - 375 ( 2003 ) MR 2006069 | Zbl 1041.60039 · Zbl 1041.60039 · doi:10.1017/S0305004103006753
[88] Xiao ( Y. ) .- Random fractals and Markov processes , Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, American Mathematical Society , 2004 MR 2112126 | Zbl 1068.60092 · Zbl 1068.60092
[89] Xiao ( Y. ) .- Strong local nondeterminism and the sample path properties of Gaussian random fields , Preprint, 2005 [99] Xiao ( Y. ) & Zhang ( T. ) .- Local times of fractional Brownian sheets , Probab. Th. Rel. Fields 124 , p. 204 - 226 ( 2002 ) MR 1936017 | Zbl 1009.60024 · Zbl 1009.60024 · doi:10.1007/s004400200210
[90] Yaglom ( A. M. ) .- Some classes of random fields in $n$-dimensional space, related to stationary random processes , Th. Probab. Appl. 2 , p. 273 - 320 ( 1957 )