A posteriori error estimates of recovery type for distributed convex optimal control problems. (English) Zbl 1128.65048

Summary: In this paper, the authors derive a posteriori error estimates of recovery type, and present the superconvergence analysis for the finite element approximation of distributed convex optimal control problems. They provide a posteriori error estimates of recovery type for both the control and the state approximation, which are generally equivalent. Under some stronger assumptions, they are further shown to be asymptotically exact. Such estimates, which are apparently not available in the literature, can be used to construct adaptive finite element approximation schemes and as a reliability bound for the control problems. Numerical results illustrating the theoretical results are presented.


65K10 Numerical optimization and variational techniques
49K99 Optimality conditions
Full Text: DOI


[1] Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Wiley Interscience, New York (2000) · Zbl 1008.65076
[2] Becker, R., Rannacher, R.: An optimal control approach to a-posteriori error estimation. In: Iserles, A. (ed.) Acta Numerica 2001, pp. 1–102. Cambridge University Press, Cambridge (2001) · Zbl 1105.65349
[3] Becker, R., Kapp, H., Rannacher, R.: Adaptive finite element methods for optimal control of partial differential equations: basic concept. SIAM J. Control Optim. 39(1), 113–132 (2000) · Zbl 0967.65080 · doi:10.1137/S0363012999351097
[4] Carstensen, C., Verfürth, R.: Edge residual dominate a posteriori error estimates for low order finite element methods. SIAM J. Numer. Anal. 36, 1571–1587 (1999) · Zbl 0938.65124 · doi:10.1137/S003614299732334X
[5] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978) · Zbl 0383.65058
[6] Falk, F.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973) · Zbl 0268.49036 · doi:10.1016/0022-247X(73)90022-X
[7] Haslinger, J., Neittaanmaki, P.: Finite Element Approximation for Optimal Shape Design. Wiley, Chichester (1989) · Zbl 0845.73001
[8] Huang, Y., Li, R., Liu, W., Yan, N.: Multi-adaptive mesh discretization for finite element approximation of constrained optimal control problems. SIAM. J. Control Optim. (to appear)
[9] Li, R., Lin, W., Ma, H., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems. SIAM J. Control Optim. 41(5), 1321–1349 (2002) · Zbl 1034.49031 · doi:10.1137/S0363012901389342
[10] Krizek, M., Neitaanmaki, P., Stenberg, R.: Finite Element Methods: Superconvergence, Post-processing, and A Posteriori Estimates. Lectures Notes in Pure and Applied Mathematics, vol. 196. Dekker, New York (1998)
[11] Lin, Q., Yan, N.: Construction and Analysis of High Efficient Finite Element. Hebei University Press (1996) (in Chinese)
[12] Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971) · Zbl 0203.09001
[13] Liu, W., Yan, N.: A posteriori error analysis for convex distributed optimal control problems. Adv. Comput. Math. 15, 285–309 (2001) · Zbl 1008.49024 · doi:10.1023/A:1014239012739
[14] Liu, W., Yan, N.: A posteriori error estimates for convex boundary control problems. SIAM J. Numer. Anal. 39, 73–99 (2001) · Zbl 0988.49018 · doi:10.1137/S0036142999352187
[15] Liu, W., Yan, N.: A posteriori error estimates for control problems governed by Stokes equations. SIAM J. Numer. Anal. 40(5), 1850–1869 (2002) · Zbl 1028.49025 · doi:10.1137/S0036142901384009
[16] Liu, W., Yan, N.: A posteriori error estimates for optimal control problems governed by parabolic equations. Numer. Math. 93(3), 497–521 (2003) · Zbl 1049.65057 · doi:10.1007/s002110100380
[17] Malanowski, K.: Convergence of approximations vs. regularity of solutions for convex, control constrained, optimal control systems. Appl. Math. Optim. 8 (1982) · Zbl 0479.49017
[18] Neittaanmaki, P., Tiba, D.: Optimal Control of Nonlinear Parabolic Systems. Theory, Algorithms and Applications. Dekker, New York (1994)
[19] Oganesyan, L.A., Rukhovetz, L.A.: Study of the rate of convergence of variational difference scheme for second order elliptic equation in two-dimensional field with a smooth boundary. V.S.S.R. Comput. Math. Math. Phys. 9, 158–183 (1969) · doi:10.1016/0041-5553(69)90159-1
[20] Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer, Berlin (1984) · Zbl 0534.49001
[21] Tiba, D., Troltzsch, F.: Error estimates for the discretization of state constrained convex control problems. Numer. Funct. Anal. Optim. 17, 1005–1028 (1996) · Zbl 0899.49013 · doi:10.1080/01630569608816739
[22] Verfurth, R.: A Review of A Posteriori Error Estimation and Adaptive Mesh Refinement. Wiley-Teubner, London (1996) · Zbl 1189.76394
[23] Yan, N., Zhou, A.: Gradient recovery type a posteriori error estimates for finite filament approximations on irregular meshes. Comput. Methods Appl. Mech. Eng. 190, 4289–4299 (2001) · Zbl 0986.65098 · doi:10.1016/S0045-7825(00)00319-4
[24] Zhang, Z., Yan, N.: Recovery type a posteriori error estimates in finite element methods. Korean J. Comput. Appl. Math. 8, 235–251 (2001) · Zbl 0980.65117
[25] Zienkiewicz, O.C., Zhu, J.Z.: The superconvergent patch recovery and a posteriori error estimates. Int. J. Numer. Methods Eng. 33, 1331–1382 (1992) · Zbl 0769.73084 · doi:10.1002/nme.1620330702
[26] Zienkiewicz, O.C., Zhu, J.Z.: The superconvergence patch recovery (SPR) and adaptive finite element refinement. Comput. Methods Appl. Mech. Eng. 101, 207–224 (1992) · Zbl 0779.73078 · doi:10.1016/0045-7825(92)90023-D
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.