zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A kernel-free boundary integral method for elliptic boundary value problems. (English) Zbl 1128.65102
Summary: This paper presents a class of kernel-free boundary integral (KFBI) methods for general elliptic boundary value problems (BVPs). The boundary integral equations reformulated from the BVPs are solved iteratively with the GMRES method. During the iteration, the boundary and volume integrals involving Green’s functions are approximated by structured grid-based numerical solutions, which avoids the need to know the analytical expressions of Green’s functions. The KFBI method assumes that the larger regular domain, which embeds the original complex domain, can be easily partitioned into a hierarchy of structured grids so that fast elliptic solvers such as the fast Fourier transform (FFT) based Poisson/Helmholtz solvers or those based on geometric multigrid iterations are applicable. The structured grid-based solutions are obtained with standard finite difference method (FDM) or finite element method (FEM), where the right hand side of the resulting linear system is appropriately modified at irregular grid nodes to recover the formal accuracy of the underlying numerical scheme. Numerical results demonstrating the efficiency and accuracy of the KFBI methods are presented. It is observed that the number of GMRES iterations used by the method for solving isotropic and moderately anisotropic BVPs is independent of the sizes of the grids that are employed to approximate the boundary and volume integrals. With the standard second-order FEMs and FDMs, the KFBI method shows a second-order convergence rate in accuracy for all of the tested Dirichlet/Neumann BVPs when the anisotropy of the diffusion tensor is not too strong.

MSC:
65N38Boundary element methods (BVP of PDE)
35J25Second order elliptic equations, boundary value problems
65N12Stability and convergence of numerical methods (BVP of PDE)
65N06Finite difference methods (BVP of PDE)
65N30Finite elements, Rayleigh-Ritz and Galerkin methods, finite methods (BVP of PDE)
WorldCat.org
Full Text: DOI
References:
[1] Thomée, V.: From finite differences to finite elements: a short history of numerical analysis of partial differential equations. J. comput. Appl. math. 128, No. 1 -- 2, 1-54 (2001) · Zbl 0977.65001
[2] Liu, G. R.; Gershwin, M. E.; Lucas, A. M.: Mesh free methods. (2002)
[3] Li, S.; Liu, W. K.: Meshfree particle methods. (2004) · Zbl 1073.65002
[4] Belytschko, T.; Chen, J. S.: Meshfree and particle methods. (2007)
[5] Peskin, C. S.: Numerical analysis of blood flow in the heart. J. comput. Phys. 25, 220-252 (1977) · Zbl 0403.76100
[6] Peskin, C. S.: Lectures on mathematical aspects of physiology. Lectures appl. Math. 19, 69-107 (1981) · Zbl 0461.92004
[7] Peskin, C. S.: The immersed boundary method. Acta numer., 1-39 (2002)
[8] Leveque, R. J.; Li, Z. -L.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Num. anal. 31, No. 4, 1019-1044 (1994) · Zbl 0811.65083
[9] Osher, S.; Sethian, J. A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton -- Jacobi formulations. J. comput. Phys. 79, 12-49 (1988) · Zbl 0659.65132
[10] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S.: A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. comput. Phys. 152, 457-492 (1999) · Zbl 0957.76052
[11] Liu, X. -D.; Fedkiw, R. P.; Kang, M.: A boundary condition capturing method for Poisson’s equation on irregular domains. J. comput. Phys. 160, 151-178 (2000) · Zbl 0958.65105
[12] Liu, X. -D.; Sideris, T. C.: Convergence of the ghost fluid method for elliptic equations with interfaces. Math. comput. 72, No. 244, 1731-1746 (2003) · Zbl 1027.65140
[13] Mayo, A.: The fast solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Numer. anal. 21, 285-299 (1984) · Zbl 1131.65303
[14] Mayo, A.: Fast high order accurate solution of Laplace’s equation on irregular regions. SIAM J. Sci. statist. Comput. 6, 144-157 (1985) · Zbl 0559.65082
[15] Cortez, R.; Minion, M.: The blob projection method for immersed boundary problems. J. comput. Phys. 161, No. 2, 428-453 (2000) · Zbl 0962.74078
[16] Lai, M. -C.; Peskin, C. S.: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity. J. comput. Phys. 160, 705-719 (2000) · Zbl 0954.76066
[17] Tornberg, A. K.; Engquist, B.: Regularization techniques for numerical approximation of pdes with singularities. J. sci. Comput. 19, 527-552 (2003) · Zbl 1035.65085
[18] Tornberg, A. K.; Engquist, B.: Numerical approximations of singular source terms in differential equations. J. comput. Phys. 200, 462-488 (2004) · Zbl 1115.76392
[19] Engquist, B.; Tornberg, A. K.; Tsai, R.: Discretization of Dirac delta functions in level set methods. J. comput. Phys. 207, 28-51 (2005) · Zbl 1074.65025
[20] Gibou, F.; Fedkiw, R. P.: A fourth order accurate discretization for the Laplace and heat equations on arbitrary domains with applications to the Stefan problem. J. comput. Phys. 202, 577-601 (2005) · Zbl 1061.65079
[21] Linnick, M. N.; Fasel, H. F.: A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains. J. comput. Phys. 204, 157-192 (2005) · Zbl 1143.76538
[22] Li, Z. -L.; Ito, K.: Maximum principle preserving schemes for interface problems with discontinuous coefficients. SIAM J. Sci. comput. 23, No. 1, 330-361 (2001) · Zbl 1001.65115
[23] Adams, L.; Li, Z. -L.: The immersed interface/multigrid methods for interface problems. SIAM J. Sci. comput. 24, No. 2, 463-479 (2002) · Zbl 1014.65099
[24] Adams, L.; Chartier, T. P.: New geometric immersed interface multigrid solvers. SIAM J. Sci. comput. 25, 1516-1533 (2004) · Zbl 1062.65129
[25] Li, Z. -L.: A fast iterative algorithm for elliptic interface problems. SIAM J. Numer. anal. 35, No. 1, 230-254 (1998) · Zbl 0915.65121
[26] Wiegmann, A.; Bube, K. P.: The explicit-jump immersed interface method: finite difference methods for pdes with piecewise smooth solutions. SIAM J. Numer. anal. 37, No. 3, 827-862 (2000) · Zbl 0948.65107
[27] Li, Z. -L.; Wang, W. -C.; Chern, I. -L.; Lai, M. -C.: New formulations for interface problems in polar coordinates. SIAM J. Sci. comput. 25, 224-245 (2003) · Zbl 1040.65087
[28] Li, Z. -L.: A note on immersed interface method for three-dimensional elliptic equations. Comput. math. Appl. 31, No. 3, 9-17 (1996) · Zbl 0876.65074
[29] Leveque, R. J.; Li, Z. -L.: Immersed interface method for Stokes flow with elastic boundaries or surface tension. SIAM J. Sci. statist. Comput. 18, 709-735 (1997) · Zbl 0879.76061
[30] Leveque, R. J.; Zhang, C.: Immersed interface methods for wave equations with discontinuous coefficients. Wave motion 25, 237-263 (1997) · Zbl 0915.76084
[31] Li, Z. -L.: Immersed interface method for moving interface problems. Numer. algorith. 14, 269-293 (1997) · Zbl 0886.65096
[32] Fogelson, A. L.; Keener, J. P.: Immersed interface methods for Neumann and related problems in two and three dimensions. SIAM J. Sci. comput. 22, 1630-1654 (2000) · Zbl 0982.65112
[33] Li, Z. -L.; Lai, M. -C.: The immersed interface method for the Navier -- Stokes equations with singular forces. J. comput. Phys. 171, 822-842 (2001) · Zbl 1065.76568
[34] Dumett, M.; Keener, J.: An immersed interface method for anisotropic elliptic problems on irregular domains in 2D. Numer. methods partial differ. Eqs. 21, 397-420 (2005) · Zbl 1073.65114
[35] Dumett, M. A.; Keener, J. P.: An immersed interface method for solving anisotropic elliptic boundary value problems in three dimensions. SIAM J. Sci. comput. 25, 348-367 (2003) · Zbl 1071.65137
[36] Hou, S.; Liu, X. -D.: A numerical method for solving variable coefficient elliptic equation with interfaces. J. comput. Phys. 202, 411-445 (2005) · Zbl 1061.65123
[37] Mayo, A.: The rapid evaluation of volume integrals of potential theory on general regions. J. comput. Phys. 100, 236-245 (1992) · Zbl 0772.65012
[38] Mayo, A.; Greenbaum, A.: Fast parallel iterative solution of Poisson’s and biharmonic equations on irregular regions. SIAM J. Sci. statist. Comput. 13, 101-118 (1992) · Zbl 0752.65080
[39] Greenbaum, A.; Greengard, L.; Mayo, A.: On the numerical solution of the biharmonic equation in the plane. Physica D 60, 216-225 (1992) · Zbl 0824.65117
[40] Greenbaum, A.; Greengard, L.; Mcfadden, G. B.: Laplace’s equation and the Dirichlet -- Neumann map in multiply connected domains. J. comput. Phys. 105, No. 2, 267-278 (1993) · Zbl 0769.65085
[41] Beale, J. T.; Lai, M. C.: A method for computing nearly singular integrals. SIAM J. Numer. anal. 38, No. 6, 1902-1925 (2001) · Zbl 0988.65025
[42] Beale, J. T.: A grid-based boundary integral method for elliptic problems in three-dimensions. SIAM J. Numer. anal. 42, 599-620 (2004) · Zbl 1159.65368
[43] Mckenney, A.; Greengard, L.; Mayo, A.: A fast Poisson solver for complex geometries. J. comput. Phys. 118, 348-355 (1995) · Zbl 0823.65115
[44] Berthelsen, P. A.: A decomposed immersed interface method for variable coefficient elliptic equations with non-smooth and discontinuous solutions. J. comput. Phys. 197, 364-386 (2004) · Zbl 1052.65100
[45] Zhou, Y. C.; Zhao, S.; Feig, M.; Wei, G. W.: High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources. J. comput. Phys. 213, No. 1, 1-30 (2006) · Zbl 1089.65117
[46] Johansen, H.; Colella, P.: A Cartesian grid embedding boundary method for Poisson’s equation on irregular domains. J. comput. Phys. 147, 60-85 (1998) · Zbl 0923.65079
[47] Mccorquodale, P.; Colella, P.; Johansen, H.: A Cartesian grid embedded boundary method for the heat equation on irregular domains. J. comput. Phys. 173, 620-635 (2001) · Zbl 0991.65099
[48] Tseng, Y. -H.; Ferziger, J. H.: A ghost-cell immersed boundary method for flow in complex geometry. J. comput. Phys. 192, 593-623 (2003) · Zbl 1047.76575
[49] Oevermann, M.; Klein, R.: A Cartesian grid finite volume method for elliptic equations with variable coefficients and embedded interfaces. J. comput. Phys. 219, 749-769 (2006) · Zbl 1143.35022
[50] Cahn, J. W.; Hilliard, J. E.: Free energy of a nonuniform system i. J. chem. Phys. 28, 258-267 (1958)
[51] Proskurowski, W.; Widlund, O.: On the numerical solution of Helmholtz’s equation by the capacitance matrix method. Math. comput. 30, 433-468 (1976) · Zbl 0332.65057
[52] Z.-L. Li, K. Ito, The immersed interface method: numerical solutions of PDEs involving interfaces and irregular domains, SIAM Frontiers in Applied Mathematics 33, 2006. · Zbl 1122.65096
[53] Calhoun, D.: A Cartesian grid method for solving the two-dimensional streamfunction -- vorticity equations in irregular regions. J. comput. Phys. 176, 231-275 (2002) · Zbl 1130.76371
[54] Saad, Y.; Schultz, M. H.: GMRES: a generalized minimal residual method for solving nonsymmetric linear systems. SIAM J. Sci. statist. Comput. 7, 856-869 (1986) · Zbl 0599.65018
[55] Saad, Y.: Iterative methods for sparse linear systems. (1996) · Zbl 1031.65047
[56] Kellogg, O. D.: Foundations of potential theory. (1929) · Zbl 55.0282.01
[57] Colton, D.: Partial differential equations. (1988) · Zbl 0677.35001
[58] Kress, R.: Linear integral equations. (1989) · Zbl 0671.45001
[59] Atkinson, K. E.: The numerical solution of integral equations of the second kind. (1997) · Zbl 0899.65077
[60] Mclean, W.: Strongly elliptic systems and boundary integral equations. (2000) · Zbl 0948.35001
[61] Bramble, J. H.; Osborn, J. E.: Rate of convergence estimates for nonselfadjoint eigenvalue approximations. Math. comput. 27, No. 123, 525-549 (1973) · Zbl 0305.65064
[62] Atkinson, K.: Convergence rates for approximate eigenvalues of compact integral operators. SIAM J. Numer. anal. 12, No. 2, 213-222 (1975) · Zbl 0295.65073
[63] Osborn, J. E.: Spectral approximation for compact operators. Math. comput. 29, No. 131, 712-725 (1975) · Zbl 0315.35068
[64] Strang, G.; Fix, G. J.: An analysis of the finite element method. (1973) · Zbl 0356.65096
[65] Oden, J. T.; Reddy, T. N.: An introduction to the mathematical theory of finite elements. (1976) · Zbl 0336.35001
[66] Ciarlet, P. G.: The finite element method for elliptic problems. (1978) · Zbl 0383.65058
[67] Hughes, T. J. R.: The finite element method: linear static and dynamic finite element analysis. (1987) · Zbl 0634.73056
[68] Zienkiewicz, O. C.; Taylor, R. L.: The finite element method. (1994) · Zbl 0979.74003
[69] Beale, J. T.; Layton, A. T.: On the accuracy of finite difference methods for elliptic problems with interfaces. Commun. appl. Math. comput. Sci. 1, 91-119 (2006) · Zbl 1153.35319
[70] Thomée, V.; Xu, J.; Zhang, N.: Superconvergence of gradient in piecewise linear finite element approximation to a parabolic problem. SIAM J. Numer. anal. 26, No. 3, 553-573 (1989) · Zbl 0678.65079
[71] Rannacher, R.; Scott, R.: Some optimal error estimates for piecewise linear finite element approximations. Math. comput. 38, 437-445 (1982) · Zbl 0483.65007
[72] Brenner, S. C.; Scott, L. R.: The mathematical theory of finite element methods. (1994) · Zbl 0804.65101
[73] Bramble, J. H.; Thomée, V.: Pointwise bounds for discrete Green’s functions. SIAM J. Numer. anal. 6, 583-590 (1969) · Zbl 0212.17904
[74] Lorentz, R. A.: Multivariate Birkhoff interpolation. (1992) · Zbl 0760.41002