zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An explicit solution of the large deformation of a cantilever beam under point load at the free tip. (English) Zbl 1128.74026
Summary: The large deformation of a cantilever beam under point load at the free tip is investigated by an analytic method, namely the homotopy analysis method. Explicit analytic formulas for the rotation angle at the free tip are given, which provide a convenient and straightforward approach to calculate a vertical and horizontal displacements of the cantilever beam with large deformation. These explicit formulas are valid for most practical problems, thus providing a useful reference for engineering applications. The corresponding Mathematica code is given in an appendix.

74K10Rods (beams, columns, shafts, arches, rings, etc.) in solid mechanics
74G05Explicit solutions for equilibrium problems in solid mechanics
Full Text: DOI
[1] Abbasbandy, S.: The application of the homotopy analysis method to nonlinear equations arising in heat transfer, Phy. lett. A 360, 109-113 (2006) · Zbl 1236.80010
[2] Abbasbandy, S.: The application of the homotopy analysis method to solve a generalized Hirota -- satsuma coupled KdV equation, Phy. lett. A 361, 478-483 (2007) · Zbl 1273.65156
[3] Adomian, G.: Nonlinear stochastic differential equations, J. math. Anal. appl. 55, 441-452 (1976) · Zbl 0351.60053 · doi:10.1016/0022-247X(76)90174-8
[4] Asghar, S.; Gulzar, M. M.; Ayub, M.: Effect of partial slip on flow of a third grade fluid, Acta mech. Sinica 22, 195-198 (2006) · Zbl 1202.76009 · doi:10.1007/s10409-006-0109-3
[5] Ayub, M.; Rasheed, A.; Hayat, T.: Exact flow of a third grade fluid past a porous plate using homotopy analysis method, Internat. J. Eng. sci. 41, 2091-2103 (2003) · Zbl 1211.76076 · doi:10.1016/S0020-7225(03)00207-6
[6] Cheng, J.; Liao, S. J.; Pop, I.: Analytic series solution for unsteady mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium, Transp. porous media 61, 365-379 (2005)
[7] Gere, J. M.; Timoshenko, S. P.: Mechanics of materials, (1997)
[8] Hayat, T.; Khan, M.; Asghar, S.: Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid, Acta mech. 168, 213-232 (2004) · Zbl 1063.76108 · doi:10.1007/s00707-004-0085-2
[9] He, J. -H.: Homotopy perturbation techique, Comput. methods appl. Mech. eng. 178, 257-262 (1999) · Zbl 0956.70017
[10] A.V. Karmishin, A.T. Zhukov, V.G. Kolosov, Methods of Dynamics Calculation and Testing for Thin-walled Structures, Mashinostroyenie, Moscow, 1990 (in Russian).
[11] Liao, S. J.: The proposed homotopy analysis technique for the solution of nonlinear problems, (1992)
[12] Liao, S. J.: An explicit, totally analytic approximation of Blasius viscous flow problems, Internat. J. Non-linear mech. 34, No. 4, 759-778 (1999) · Zbl 05137896
[13] Liao, S. J.: Beyond perturbation: introduction to the homotopy analysis method, (2003)
[14] Liao, S. J.: On the homotopy analysis method for nonlinear problems, Appl. math. Comput. 147, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[15] Liao, S. J.: Series solutions of unsteady boundary-layer flows over a stretching flat plate, Stud. appl. Math. 117, No. 3, 2529-2539 (2006) · Zbl 1145.76352 · doi:10.1111/j.1467-9590.2006.00354.x
[16] Nayfeh, A. H.: Perturbation methods, (2000) · Zbl 0995.35001
[17] Sajid, M.; Hayat, T.; Asghar, S.: On the analytic solution of the steady flow of a forth grade fluid, Phy. lett. A 355, 18-26 (2006)
[18] M. Sajid, T. Hayat, S. Asghar, Comparison between the HAM and HPM solutions of tin film flows of non-Newtonian fluids on a moving belt, Nonlinear Dynam., in press. · Zbl 1181.76031 · doi:10.1007/s11071-006-9140-y
[19] Shi, Y. R.: Application of the homotopy analysis method to solve nonlinear evalution equations, Acta phys. Sinica 55, 1555-1559 (2006)
[20] Yu, T. X.; Zhang, L. Z.: Theory of plastic bending and its applications, (1992)