zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Partial wave expansion and Wightman positivity in conformal field theory. (English) Zbl 1128.81320
Summary: A new method for computing exact conformal partial wave expansions is developed and applied to approach the problem of Hilbert space (Wightman) positivity in a nonperturbative four-dimensional quantum field theory model. The model is based on the assumption of global conformal invariance on compactified Minkowski space (GCI). Bilocal fields arising in the harmonic decomposition of the operator product expansion (OPE) prove to be a powerful instrument in exploring the field content. In particular, in the theory of a field $\mathcal L$ of dimension 4 which has the properties of a (gauge invariant) Lagrangian, the scalar field contribution to the 6-point function of the twist 2 bilocal field is analyzed with the aim to separate the free field part from the nontrivial part.

MSC:
81T40Two-dimensional field theories, conformal field theories, etc.
81T05Axiomatic quantum field theory; operator algebras
81T08Constructive quantum field theory
WorldCat.org
Full Text: DOI arXiv
References:
[1] Dobrev, V. K.; Petkova, V. B.; Petrova, S. G.; Todorov, I. T.: Dynamical derivation of vacuum operator product expansion in conformal field theory. Phys. rev. D 13, 887-912 (1976)
[2] Dobrev, V. K.; Mack, G.; Petkova, V. B.; Petrova, S. G.; Todorov, I. T.: Harmonic analysis of the n-dimensional Lorentz group and its applications to conformal quantum field theory. (1977) · Zbl 0407.43010
[3] Ferrara, S.; Gatto, R.; Grillo, A.; Parisi, G.: The shadow operator formalism for conformal algebra vacuum expectation values and operator products. Nuovo cimento lett. 4, 115-120 (1972)
[4] Rehren, K. -H.; Schroer, B.: Quasiprimary fields: an approach to positivity of 2D conformal quantum field theory. Nucl. phys. B 229, 229-242 (1988)
[5] Lang, K.; Rühl, W.: The critical $O(N)$ sigma-model at dimension 2<d<4: fusion coefficients and anomalous dimensions. Nucl. phys. B 400, 597-623 (1993) · Zbl 0941.81585
[6] Dolan, F. A.; Osborn, H.: Conformal four point functions and operator product expansion. Nucl. phys. B 599, 459-496 (2001) · Zbl 1097.81734
[7] Hoffmann, L.; Petkou, A. C.; Rühl, W.: Aspects of the conformal operator product expansion in the AdS/CFT correspondence. Adv. theor. Math. phys. 4, 571-615 (2002) · Zbl 1018.81047
[8] Nikolov, N. M.; Stanev, Ya.S.; Todorov, I. T.: Globally conformal invariant gauge field theory with rational correlation functions. Nucl. phys. B 670, 373-400 (2003) · Zbl 1058.81054
[9] Dolan, F. A.; Osborn, H.: Conformal partial waves and operator product expansion. Nucl. phys. B 678, 491-507 (2004) · Zbl 1097.81735
[10] Nikolov, N. M.; Stanev, Ya.S.; Todorov, I. T.: Rational correlation functions of gauge invariant local fields in four dimensions. Proceedings of V international workshop on Lie theory and its applications to physics, 87-108 (2004) · Zbl 1229.81167
[11] Nikolov, N. M.; Todorov, I. T.: Conformal invariance and rationality in an even-dimensional quantum field theory. Int. J. Mod. phys. A 19, 3605-3636 (2004) · Zbl 1065.81587
[12] Nikolov, N. M.; Todorov, I. T.: Rationality of conformally invariant local correlation functions on compactified Minkowski space. Commun. math. Phys. 218, 417-436 (2001) · Zbl 0985.81055
[13] Nikolov, N. M.; Stanev, Ya.S.; Todorov, I. T.: Four-dimensional CFT models with rational correlation functions. J. phys. A: math. Gen. 35, 2985-3007 (2002) · Zbl 1041.81097
[14] Swieca, J. A.; Völkel, A. H.: Remarks on conformal invariance. Commun. math. Phys. 29, 319-342 (1973)
[15] Schroer, B.; Swieca, J. A.; Völkel, A. H.: Global operator expansions in conformally invariant relativistic quantum field theory. Phys. rev. D 11, 1509-1520 (1975)
[16] Lüscher, M.; Mack, G.: Global conformal invariance in quantum field theory. Commun. math. Phys. 41, 203-234 (1975)
[17] Streater, R. F.; Wightman, A. S.: PCT, spin and statistics, and all that. (1964) · Zbl 0135.44305
[18] Nikolov, N. M.: Vertex algebras in higher dimensions and globally conformal invariant quantum field theory. Commun. math. Phys. 253, 283-322 (2005) · Zbl 1125.17010
[19] Todorov, I. T.: Infinite-dimensional Lie algebras in conformal QFT models. Lecture notes in physics 261, 387-443 (1986)
[20] Uhlmann, A.: The closure of Minkowski space. Acta phys. Pol 24, 295-296 (1963) · Zbl 0115.42303
[21] Kac, V. G.: Vertex algebras for beginners. University lecture series 10 (1996) · Zbl 0861.17017
[22] N.M. Nikolov, unpublished
[23] Petkou, A. C.: Conserved currents, consistency relations and operator product expansions in the conformally invariant $O(N)$ vector model. Ann. phys. 249, 180-221 (1996) · Zbl 0873.47044
[24] Arutyunov, G.; Frolov, S.; Petkou, A. C.: Nucl. phys. B. 609, 539 (2001)
[25] Arutyunov, G.; Eden, B.; Petkou, A. C.; Sokatchev, E.: Exceptional non-renormalization properties and OPE analysis of chiral four-point functions in N=4 SYM4. Nucl. phys. B 620, 380-404 (2002) · Zbl 0982.81049
[26] Carpi, S.; Conti, R.: Classification of subsystems for graded-local nets with trivial superselection structure. Commun. math. Phys. 253, 423-449 (2005) · Zbl 1087.81039
[27] Mack, G.; Symanzik, K.: Currents, stress tensor and generalized unitarity in conformal invariant quantum field theory. Commun. math. Phys. 27, 247-281 (1972)
[28] Mack, G.: Introduction to conformal invariant quantum field theory in two and more dimensions. Nonperturbative quantum field theory, 353-383 (1988)
[29] Anselmi, D.: Central functions and their physical implications. Jhep 9805, 005 (1998) · Zbl 0958.81044
[30] Stanev, Ya.S.: Stress energy tensor and $U(1)$ current operator product expansion in conformal QFT. Bulg. J. Phys. 15, 93-107 (1988)
[31] Dütsch, M.; Rehren, K. -H.: Generalized free fields and the AdS-CFT correspondence. Ann. inst. H. Poincaré 4, 613-635 (2003) · Zbl 1038.81051
[32] A. Schneider, Diploma thesis, University of Göttingen, 2005