zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solving fuzzy (stochastic) linear programming problems using superiority and inferiority measures. (English) Zbl 1128.90061
Summary: The author presents a model to measure the superiority and inferiority of fuzzy numbers/fuzzy stochastic variables. Then, the new measures are used to convert the fuzzy (stochastic) linear program into the corresponding deterministic linear program. Numerical examples are provided to illustrate the effectiveness of the proposed method.

90C70Fuzzy programming
90C15Stochastic programming
Full Text: DOI
[1] Campos, L.; Verdegay, J. L.: Linear programming problems and ranking of fuzzy numbers. Fuzzy sets and systems 32, 1-11 (1989) · Zbl 0674.90061
[2] Chanas, S.; Zielinski, P.: On the equivalence of two optimization methods for fuzzy linear programming problems. European journal of operational research 121, 56-63 (2000) · Zbl 0959.90069
[3] Chiang, J.: Fuzzy linear programming based on statistical confidence interval and interval-valued fuzzy set. European journal of operational research 129, 65-86 (2001) · Zbl 0994.90143
[4] Fang, S. C.; Hu, C. F.; Wang, H. F.; Wu, S. Y.: Linear programming with fuzzy coefficients in constraints. Computers and mathematics with applications 37, 63-76 (1999) · Zbl 0931.90069
[5] Fortemps, Ph.; Roubens, M.: Ranking and defuzzification methods based on area compensation. Fuzzy sets and systems 82, 319-330 (1996) · Zbl 0886.94025
[6] Guu, S. M.; Wu, Y. K.: Two-phase approach for solving the fuzzy linear programming problems. Fuzzy sets and systems 107, 191-195 (1999) · Zbl 0949.90098
[7] Inuiguchi, M.; Ramik, J.: Possibilistic linear programming: a brief review of fuzzy mathematical programming and a comparison with stochastic programming in portfolio selection problem. Fuzzy sets and systems 111, 3-28 (2000) · Zbl 0938.90074
[8] Iskander, M. G.: A suggested approach for possibility and necessity dominance indices in stochastic fuzzy linear programming. Applied mathematics letters 18, 395-399 (2005) · Zbl 1074.90032
[9] Jamison, K. D.; Lodwick, W. A.: Fuzzy linear programming using a penalty method. Fuzzy sets and systems 119, 97-110 (2001) · Zbl 1044.90532
[10] Maleki, H. R.; Tata, M.; Mashinchi, M.: Linear programming with fuzzy variables. Fuzzy sets and systems 109, 21-33 (2000) · Zbl 0956.90068
[11] Wang, D.: An inexact approach for linear programming problems with fuzzy objective and resources. Fuzzy sets and systems 89, 61-68 (1997)
[12] Liu, B.; Liu, Y. K.: Expected value of fuzzy variable and fuzzy expected value models. IEEE transactions on fuzzy systems 10, 445-450 (2002)
[13] Liu, B.: Fuzzy random dependent-chance programming. IEEE transactions on fuzzy systems 9, 721-726 (2001)
[14] Liu, B.: Fuzzy random chance-constrained programming. IEEE transactions on fuzzy systems 9, 713-720 (2001)
[15] Liu, Y. K.; Liu, B.: A class of fuzzy random optimization: expected value models. Information sciences 155, 89-102 (2003) · Zbl 1039.60002
[16] Luhandjula, M. K.: Optimization under hybrid uncertainty. Fuzzy sets and systems 146, 187-203 (2004) · Zbl 1061.90123
[17] Luhandjula, M. K.; Gupta, M. M.: On fuzzy stochastic optimization. Fuzzy sets and systems 81, 47-55 (1996) · Zbl 0879.90187
[18] Luhandjula, M. K.: Fuzziness and randomness in an optimization framework. Fuzzy sets and systems 77, 291-297 (1996) · Zbl 0869.90081
[19] Liu, Y. K.; Liu, B.: Fuzzy random programming with equilibrium chance constraints. Information sciences 170, 363-395 (2005) · Zbl 1140.90520
[20] Liu, B.: Random fuzzy dependent-chance programming and its hybrid intelligent algorithm. Information sciences 141, 259-271 (2002) · Zbl 1175.90439
[21] Garcı&acute, D.; A; Lubiano, M. A.; Alonso, M. C.: Estimating the expected value of fuzzy random variables in the stratified random sampling from finite populations. Information sciences 138, 165-184 (2001) · Zbl 1003.62005
[22] Croft, H. T.; Falconer, K. J.; Guy, R. K.: Unsolved problems in geometry. (1991) · Zbl 0748.52001
[23] Zimmerman: Fuzzy sets theory -- and its applications. (1985)
[24] Yao, J. S.; Wu, K.: Ranking fuzzy numbers based on decomposition principle and signed distance. Fuzzy sets and systems 116, 275-288 (2000) · Zbl 1179.62031
[25] Shih, C. J.; Wangsawidjaja, R. A. S.: Mixed fuzzy-probabilistic programming approach for multiobjective engineering optimization with random variables. Computers and structures 59, No. 2, 283-290 (1996) · Zbl 0919.73082
[26] Zmeskal, Z.: Value at risk methodology under soft conditions approach (fuzzy-stochastic approach). European journal of operational research 161, No. 2, 337-347 (2005)