zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synthesis of fractional Laguerre basis for system approximation. (English) Zbl 1128.93019
Summary: Fractional differentiation systems are characterized by the presence of non-exponential aperiodic multimodes. Although rational orthogonal bases can be used to model any $L_{2}[0,\infty [$ system, they fail to quickly capture the aperiodic multimode behavior with a limited number of terms. Hence, fractional orthogonal bases are expected to better approximate fractional models with fewer parameters. Intuitive reasoning could lead to simply extending the differentiation order of existing bases from integer to any positive real number. However, classical Laguerre, and by extension Kautz and generalized orthogonal basis functions, are divergent as soon as their differentiation order is non-integer. In this paper, the first fractional orthogonal basis is synthesized, extrapolating the definition of Laguerre functions to any fractional order derivative. Completeness of the new basis is demonstrated. Hence, a new class of fixed denominator models is provided for fractional system approximation and identification.

93B50Synthesis problems
93B30System identification
26A33Fractional derivatives and integrals (real functions)
33C45Orthogonal polynomials and functions of hypergeometric type
Full Text: DOI
[1] Abbott, P. C.: Generalized Laguerre polynomials and quantum mechanics. Journal of physics A: mathematical and general 33, No. 42, 7659-7660 (2000) · Zbl 1066.33500
[2] Akçay, H.; Ninness, B.: Orthonormal basis functions for modelling continuous-time systems. Signal processing 77, 261-274 (1999) · Zbl 0941.94002
[3] Aoun, M. (2005). Systèmes linéaires non entiers et identification par bases orthogonales non entières. Ph.D. Thesis, Université Bordeaux 1, France.
[4] Aoun, M.; Malti, R.; Levron, F.; Oustaloup, A.: Numerical simulations of fractional systems: an overview of existing methods and improvements. International journal of nonlinear dynamics and chaos in engineering systems, special issue on ’fractional derivatives and their applications’ 38, No. 1-4, 117-131 (2004) · Zbl 1134.65300
[5] Battaglia, J. -L.; Le Lay, L.; Batsale, J. -C.; Oustaloup, A.; Cois, O.: Heat flux estimation through inverted non integer identification models. International journal of thermal sciences 39, No. 3, 374-389 (2000)
[6] Darling, R.; Newman, J.: On the short behavior of porous intercalation electrodes. Journal of the electrochemical society 144, No. 9, 3057-3063 (1997)
[7] El Sayed, A. -M.: On the generalized Laguerre polynomials of arbitrary (fractional) orders and quantum mechanics. Journal of physics A: mathematical and general 32, 8647-8654 (1999) · Zbl 0947.33005
[8] Garnett, J. B.: Bounded analytic functions. (2007) · Zbl 1106.30001
[9] Gradshteyn, I. -S.; Ryshik, I. -M.: Table of integrals, series, and products. (1980)
[10] Ljung, L.: System identification--theory for the user. (1999) · Zbl 0949.93509
[11] Malti, R., Aoun, M., Levron, F., & Oustaloup, A. (2003). H2 norm of fractional differential systems. In Proceedings of design engineering technical conferences and computer and information in engineering conferences, Chicago, Illinois, USA, September 2003. New York: ASME. · Zbl 1134.65300
[12] Malti, R.; Ekongolo, S. -B.; Ragot, J.: Dynamic SISO and MIMO system approximations based on optimal Laguerre models. IEEE transactions on automatic control 43, No. 9 (1998) · Zbl 0962.93039
[13] Matignon, D.: Stability properties for generalized fractional differential systems. ESAIM Proceedings--systèmes différentiels fractionnaires--modèles, méthodes et applications 5, 145-158 (1998)
[14] Ninness, B.; Gustafsson, F.: A unifying construction of orthonormal bases for system identification. IEEE transactions on automatic control 42, No. 4, 515-521 (1997) · Zbl 0874.93034
[15] Oldham, K. -B.; Spanier, J.: The fractional calculus: theory and applications of differentiation and integration to arbitrary order. (1974) · Zbl 0292.26011
[16] Ortigueira, M.D., & Tenreiro Machado, J.A. (Eds.) (2006). Signal processing--special issue: Fractional calculus applications in signals and systems, (Vol. 86). Amsterdam: Elsevier, October 2006. · Zbl 1172.94301
[17] Oustaloup, A.: La dérivation non entière: théorie, synthèse et applications. (1995)
[18] Poinot, T.; Trigeassou, J. -C.: A method for modelling and simulation of fractional systems. Signal processing 83, 2319-2333 (2003) · Zbl 1145.94372
[19] Rudin, W.: Real and complex analysis. (1987) · Zbl 0925.00005
[20] The American Heritage©(Ed.) (2000). Dictionary of the English language. (4th ed.) Houghton Mifflin Company.
[21] Den Hof, P. -M.-J. Van; Heuberger, P. -S.-C.; Bokor, J.: System identification with generalized orthonormal basis functions. Automatica 31, No. 12, 1821-1834 (1995) · Zbl 0848.93013
[22] Wahlberg, B.: System identification using Laguerre models. IEEE transactions on automatic control 36, 551-562 (1991) · Zbl 0738.93078