zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Passivity-based designs for synchronized path-following. (English) Zbl 1128.93331
Summary: We consider a formation control system where individual systems are controlled by a path-following design and the path variables are to be synchronized. We first show a passivity property for the path-following system, and next, combine this with a passivity-based synchronization algorithm developed in {\it M. Arcak} [Passivity as a design tool for group coordination. IEEE Trans. Autom. Control (2007), in press]. The passivity approach expands the classes of synchronization schemes available to the designer. This generality offers the possibility to optimize controllers to, e.g., improve robustness and performance. Two designs are developed in the proposed passivity framework: the first employs the path error information in the synchronization loop, while the second only uses synchronization errors. A sampled-data design, where the path variables are updated in discrete-time and the path-following controllers are updated in continuous time, is also developed.

MSC:
93B51Design techniques in systems theory
93A14Decentralized systems
WorldCat.org
Full Text: DOI
References:
[1] Aguiar, A. P.; Hespanha, J. P.; Kokotović, P. V.: Path-following for non-minimum phase systems removes performance limitations. IEEE transactions on automatic control 50, No. 2, 234-239 (2005)
[2] Al-Hiddabi, S. A.; Mcclamroch, N. H.: Tracking and maneuver regulation control for nonlinear nonminimum phase systems: application to flight control. IEEE transactions on control systems technology 10, No. 6, 780-792 (2002)
[3] Arcak, M. (2007). Passivity as a design tool for group coordination. IEEE Transactions on Automatic Control, in press.
[4] Biyik, E., & Arcak, M. (2006). Passivity-based agreement protocols: Continuous-time and sampled-data designs. In K. Y. Pettersen, T. Gravdahl, & H. Nijmeijer (Eds.), Group coordination and cooperative control, Lecture notes in control and information sciences (Vol. 336, pp. 21-33). Berlin Heidelberg: Springer. · Zbl 1217.93011
[5] Do, K. D., Jiang, Z. P. & Pan, J. (2002). Robust adaptive path-following of underactuated ships. In Proceedings of the 41st IEEE conference on decision and control (pp. 3243-3248). Las Vegas, NV, USA. · Zbl 1096.93021
[6] Encarnação, P., & Pascoal, A. (2001). Combined trajectory tracking and path-following: An application to the coordinated control of autonomous marine craft. In Proceedings of the 40th IEEE conference on decision and control (pp. 964-969). Orlando, FL, USA.
[7] Fossen, T. I.: Marine control systems: guidance, navigation and control of ships, rigs and underwater vehicles. (2002)
[8] Godsil, C. D., & Royle, G. F. (2001). Algebraic Graph Theory, Graduate texts in mathematics (Vol. 207). New York: Springer. · Zbl 0968.05002
[9] Hauser, J., & Hindman, R. (1995). Maneuver regulation from trajectory tracking: Feedback linearizable systems. In Proceedings of the IFAC symposium on nonlinear control systems design (pp. 595-600). Lake Tahoe, CA, USA.
[10] Ihle, I.-A. F., Jouffroy, J., & Fossen, T. I. (2005). Formation control of marine surface craft using Lagrange multipliers. In Proceedings of the 44th IEEE conference on decision and control and 5th European control conference (pp. 752-758). Seville, Spain. · Zbl 1217.93123
[11] Ihle, I.-A. F., Skjetne, R., & Fossen, T. I. (2004). Nonlinear formation control of marine craft with experimental results. In Proceedings of the 43rd IEEE conference on decision and control (pp. 680-685). Atlantis, Paradise Island, The Bahamas.
[12] Khalil, H. K.: Nonlinear systems. (2002) · Zbl 1003.34002
[13] Kumar, V., Leonard, N., & Morse, A. S. (Eds.) (2005). Cooperative control, Lecture notes in control and information sciences (Vol. 309). Berlin, Heidelberg: Springer.
[14] Laila, D. S.; Nešić, D.; Teel, A. R.: Open and closed loop dissipation inequalities under sampling and controller emulation. European journal of control 8, No. 2, 109-125 (2002) · Zbl 1293.93388
[15] Loría, A.; Panteley, E.; Popović, D.; Teel, A. R.: A nested matrosov theorem and persistency of excitation for uniform convergence in stable nonautonomous systems. IEEE transactions on automatic control 50, No. 2, 183-198 (2005)
[16] Ren, W., Beard, R. W., & Atkins, E. M. (2005). A survey of consensus problems in multi-agent coordination. In Proceedings of the American control conference (pp. 1859-1864). Portland, OR, USA.
[17] Samson, C. (1992). Path following and time-varying feedback stabilization of a wheeled mobile robot. In Proceedings of the ICARCV’92’, Singapore.
[18] Sepulchre, R.; Janković, M.; Kokotović, P.: Constructive nonlinear control. (1997) · Zbl 1067.93500
[19] Skjetne, R.; Fossen, T. I.; Kokotović, P. V.: Robust output maneuvering for a class of nonlinear systems. Automatica 40, No. 3, 373-383 (2004) · Zbl 1042.93024
[20] Skjetne, R., Ihle, I.-A. F., & Fossen, T. I. (2003). Formation control by synchronizing multiple maneuvering systems. In Proceedings of the 6th IFAC conference on maneuvering and control of marine crafts (pp. 280-285). Girona, Spain.
[21] Skjetne, R., Teel, A. R., & Kokotović, P. V. (2002). Nonlinear maneuvering with gradient optimization. In Proceedings of the 41st IEEE conference on decision and control (pp. 3926-3931). Las Vegas, NV, USA.
[22] Sontag, E.; Teel, A.: Changing supply functions in input/state stable systems. IEEE transactions on automatic control 40, 1476-1478 (1995) · Zbl 0832.93047
[23] Sontag, E. D.: Smooth stabilization implies coprime factorization. IEEE transactions on automatic control 34, No. 4, 435-443 (1989) · Zbl 0682.93045