×

zbMATH — the first resource for mathematics

Intersection cohomology of reductive varieties. (English) Zbl 1129.14033
Summary: We extend the methods developed in our earlier work to algorithmically compute the intersection cohomology Betti numbers of reductive varieties. These form a class of highly symmetric varieties that includes equivariant compactifications of reductive groups. Thereby, we extend a well-known algorithm for toric varieties.

MSC:
14F43 Other algebro-geometric (co)homologies (e.g., intersection, equivariant, Lawson, Deligne (co)homologies)
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
19D99 Higher algebraic \(K\)-theory
55N33 Intersection homology and cohomology in algebraic topology
PDF BibTeX XML Cite
Full Text: DOI Link arXiv
References:
[1] Alexeev, V., Brion, M.: Stable reductive varieties I: Affine varieties. Invent. Math. 154 , 227-274 (2004) · Zbl 1068.14003
[2] Alexeev, V., Brion, M.: Stable reductive varieties II: Projective case. Adv. Math. 184 , 380-408 (2003) · Zbl 1080.14017
[3] Barthel, G., Brasselet, J.-P., Fieseler, K.-H., Kaup, L.: Equivariant intersection cohomol- ogy of toric varieties. In: Algebraic Geometry: Hirzebruch 70 (Warsaw, 1998), Con- temp. Math. 241, Amer. Math. Soc., Providence, RI, 45-68 (1999) · Zbl 0970.14028
[4] Barthel, G., Brasselet, J.-P., Fieseler, K.-H., Kaup, L.: Combinatorial intersection cohomology for fans. Tohoku Math. J. (2) 54 , 1-41 (2002) · Zbl 1055.14024
[5] Barthel, G., Brasselet, J.-P., Fieseler, K.-H., Kaup, L.: Combinatorial duality and inter- section product: a direct approach. arXiv: math.AG/0309352
[6] Bressler, P., Lunts, V.: Intersection cohomology on nonrational polytopes. Compositio Math. 135 , 245-278 (2003) · Zbl 1024.52005
[7] Brion, M., Joshua, R.: Vanishing of odd dimensional intersection cohomology II. Math. Ann. 321 , 399-437 (2001) · Zbl 0997.14005
[8] Brion, M., Peyre, E.: The virtual Poincaré polynomials of homogeneous spaces. Com- positio Math. 134 , 319-335 (2002) · Zbl 1031.13007
[9] Denef, J., Loeser, F.: Weights, exponential sums, intersection cohomology and Newton polyhedra. Invent. Math. 106 , 275-294 (1991) · Zbl 0763.14025
[10] Dimca, A., Lehrer, G.: Purity and equivariant weight polynomials. In: Algebraic Groups and Lie Groups, Austral. Math. Soc. Lecture Ser. 9, Cambridge Univ. Press, 161-181 (1997) · Zbl 0905.57022
[11] Fieseler, K. H.: Rational intersection cohomology of projective toric varieties. J. Reine Angew. Math. 413 , 88-98 (1991) · Zbl 0716.14006
[12] Fulton, W.: Introduction to Toric Varieties. Ann. Math. Stud. 131, Princeton Univ. Press (1993) · Zbl 0813.14039
[13] Joshua, R.: Equivariant Riemann-Roch for G-quasi-projective varieties. K-theory 17 , 1-35 (1999) · Zbl 0926.19002
[14] Karu, K.: Hard Lefschetz theorem for non-rational polytopes. arXiv: math.AG/0112087 · Zbl 1077.14071
[15] Knop, F.: The asymptotic behavior of invariant collective motion. Invent. Math. 116 , 309-328 (1994) · Zbl 0802.58024
[16] Luna, D.: Variétés sphériques de type A. Publ. Math. I.H.E.S. 94 , 161-226 (2001) · Zbl 1085.14039
[17] Stanley, R.: Generalized h-vectors, intersection cohomology of toric varieties, and related results. In: Adv. Stud. Pure Math. 11, North-Holland, 187-213 (1987) · Zbl 0652.52007
[18] Stanley, R.: Subdivisions and local h-vectors. J. Amer. Math. Soc. 5 , 805-851 (1992) · Zbl 0768.05100
[19] Sumihiro, H.: Equivariant completion. J. Math. Kyoto Univ. 14 , 1-28 (1974) · Zbl 0277.14008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.