Controlling bifurcation and chaos in Internet congestion control model. (English) Zbl 1129.37362

Summary: The TCP end-to-end congestion control plus RED router queue management can be modeled as a discrete-time dynamical system, which can create complex bifurcating and chaotic behavior. Based on the basic features of the TCP-RED model, we investigate the possibility of controlling bifurcation and chaos in the system via several time-delayed feedback control strategies. Two adaptive parameter-tuning algorithms are proposed and evaluated.


37N99 Applications of dynamical systems
90B18 Communication networks in operations research


Full Text: DOI


[1] DOI: 10.1109/65.923940 · doi:10.1109/65.923940
[2] DOI: 10.1016/S1389-1286(00)00206-1 · doi:10.1016/S1389-1286(00)00206-1
[3] Braden B., IETF Request for Comments (RFC) pp 2309–
[4] DOI: 10.1142/9789812798640 · doi:10.1142/9789812798640
[5] Chen G., Controlling Chaos and Bifurcations in Engineering Systems (1999)
[6] Feng W., Proc. IEEE Infocom.
[7] Firoiu V., Proc. IEEE Infocom.
[8] DOI: 10.1109/90.251892 · doi:10.1109/90.251892
[9] DOI: 10.1109/35.917508 · doi:10.1109/35.917508
[10] DOI: 10.1007/3-540-45351-2_25 · doi:10.1007/3-540-45351-2_25
[11] Hollot C., Proc. IEEE Infocom.
[12] Hollot C., Proc. IEEE Infocom.
[13] DOI: 10.1016/S0375-9601(98)00673-2 · doi:10.1016/S0375-9601(98)00673-2
[14] Mathis M., Comput. Commun. Rev. 27 pp 633–
[15] Ott T., Proc. IEEE Infocom.
[16] DOI: 10.1145/285243.285291 · doi:10.1145/285243.285291
[17] Peterson L., Computer Networks: A System Approach 2 (1999) · Zbl 1005.68004
[18] Pyragas K., Phys. Lett. A 70 pp 421– · Zbl 1254.34083
[19] Ranjan P., Proc. IEEE Infocom.
[20] DOI: 10.1103/PhysRevE.50.3245 · doi:10.1103/PhysRevE.50.3245
[21] Veres A., Proc. IEEE Infocom.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.