×

zbMATH — the first resource for mathematics

Integration over compact quantum groups. (English) Zbl 1129.46058
We find a combinatorial formula for the Haar functional of the orthogonal and unitary quantum groups. As an application, we consider diagonal coefficients of the fundamental representation, and we investigate their spectral measures.

MSC:
46L65 Quantizations, deformations for selfadjoint operator algebras
46L54 Free probability and free operator algebras
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] T. Banica, Le groupe quantique compact libre U(n), Comm. Math. Phys. 190 (1997), no. 1, 143-172. · Zbl 0906.17009 · doi:10.1007/s002200050237 · arxiv:math/9901042
[2] , Representations of compact quantum groups and subfactors, J. Reine Angew. Math. 509 (1999), 167-198. · Zbl 0957.46038 · doi:10.1515/crll.1999.509.167 · arxiv:math/9804015
[3] , Quantum groups and Fuss-Catalan algebras, Comm. Math. Phys. 226 (2002), no. 1, 221-232. · Zbl 1034.46062 · doi:10.1007/s002200200613 · arxiv:math/0010084
[4] T. Banica and B. Collins, Integration over quantum permutation groups, in preparation. · Zbl 1170.46059 · doi:10.1016/j.jfa.2006.09.005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.