[1] |
Agnew, T. T.: Optimal exploitation of a fishery employing a non-linear harvesting function. Ecol. modelling 6, 47-57 (1979) |

[2] |
Angelova, J.; Dishliev, A.: Optimization problems for one-impulsive models from population dynamics. Nonlinear anal. 39, 483-497 (2000) · Zbl 0942.34010 |

[3] |
Artstein, Z.: Chattering limit for a model of harvesting in a rapidly changing environment. Appl. math. Optim. 28, 133-147 (1993) · Zbl 0795.90006 |

[4] |
D. Bainov, P. Simeonov, Impulsive Differential Equations: Periodic Solutions and Applications, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 66, 1993. · Zbl 0815.34001 |

[5] |
Bainov, D. D.; Simeonov, P. S.: Systems with impulse effect. (1982) · Zbl 0661.34060 |

[6] |
Ballinger, G.; Liu, X.: Permanence of population growth models with impulsive effects. Math. comput. Modelling 26, 59-72 (1997) · Zbl 1185.34014 |

[7] |
Berkovitz, L. D.: Optimal control theory. (1974) · Zbl 0295.49001 |

[8] |
Clark, C. W.: Mathematical bioeconomics: the optimal management of renewable resources. (1976) · Zbl 0364.90002 |

[9] |
Y. Cohen, Application of optimal impulse control to optimal foraging problems, in: Applications of Control Theory in Ecology, Lecture Notes in Biomathematics, vol. 73, Springer, Berlin, 1987, pp. 39 -- 56. |

[10] |
Fan, M.; Wang, K.: Optimal harvesting policy for single population with periodic coefficients. Math. biosci. 152, 165-177 (1998) · Zbl 0940.92030 |

[11] |
Goh, B. S.: Management and analysis of biological populations. (1980) |

[12] |
Hirstova, S. C.; Bainov, D. D.: Existence of periodic solutions of nonlinear systems of differential equations with impulsive effect. J. math. Anal. appl. 125, 192-202 (1987) |

[13] |
L.S. Jennings, K.L. Teo, C.J. Goh, MISER3.2 Optimal Control Software: Theory and User Manual, Department of Mathematics, the University of Western Australia, Australia, 1997 \langle http://www.cado.uwa.edu.au/miser/\rangle . |

[14] |
John, T. L.: Variational calculus and optimal control. (1996) · Zbl 0865.49001 |

[15] |
Lakmeche, A.; Arino, O.: Bifurcation of non-trivial periodic solutions of impulsive differential equations arising chemotherapeutic treatment. Dynamics continuous, discrete impulsive systems 7, 165-287 (2000) · Zbl 1011.34031 |

[16] |
Laksmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations. (1989) |

[17] |
Liu, X.: Impulsive stabilization and applications to population growth models. Rocky mountain J. Math. 25, 381-395 (1995) · Zbl 0832.34039 |

[18] |
Liu, Y.; Teo, K. L.; Jennings, L. S.; Wang, S.: On a class of optimal control problems with state jumps. J. optim. Theory appl. 98, 65-82 (1998) · Zbl 0908.49023 |

[19] |
Panetta, J. C.: A mathematical model of periodically pulsed chemotherapy: tumor recurrence and metastasis in a competition environment. Bull. math. Biol. 58, 425-447 (1996) · Zbl 0859.92014 |

[20] |
Tang, S. Y.; Cheke, R. A.: State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. math. Biol. 50, 257-292 (2005) · Zbl 1080.92067 |

[21] |
Tang, S. Y.; Chen, L. S.: Density-dependent birth rate, birth pulses and their population dynamic consequences. J. math. Biol. 44, 185-199 (2002) · Zbl 0990.92033 |

[22] |
Tang, S. Y.; Chen, L. S.: Multiple attractors in stage-structured population models with birth pulses. Bull. math. Biol. 65, 479-495 (2003) |