×

zbMATH — the first resource for mathematics

Traces for star products on the dual of a Lie algebra. (English) Zbl 1129.53305

MSC:
53D55 Deformation quantization, star products
17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B63 Poisson algebras
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1023/A:1007610715981 · Zbl 1017.53073 · doi:10.1023/A:1007610715981
[2] DOI: 10.1023/A:1007618914771 · doi:10.1023/A:1007618914771
[3] DOI: 10.1007/BF00400978 · Zbl 0567.58011 · doi:10.1007/BF00400978
[4] DOI: 10.1016/0003-4916(78)90224-5 · Zbl 0377.53024 · doi:10.1016/0003-4916(78)90224-5
[5] DOI: 10.1088/0264-9381/14/1A/008 · Zbl 0881.58021 · doi:10.1088/0264-9381/14/1A/008
[6] DOI: 10.1143/PTPS.144.1 · doi:10.1143/PTPS.144.1
[7] DOI: 10.1007/s002200050774 · Zbl 0961.53046 · doi:10.1007/s002200050774
[8] DOI: 10.1007/s002200050481 · Zbl 0968.53056 · doi:10.1007/s002200050481
[9] DOI: 10.1016/S0393-0440(98)00041-2 · Zbl 0989.53060 · doi:10.1016/S0393-0440(98)00041-2
[10] DOI: 10.1023/A:1007481019610 · Zbl 0951.53057 · doi:10.1023/A:1007481019610
[11] DOI: 10.1007/s002200050402 · Zbl 0989.53057 · doi:10.1007/s002200050402
[12] DOI: 10.1023/A:1007661703158 · Zbl 0982.53073 · doi:10.1023/A:1007661703158
[13] DOI: 10.1016/S0393-0440(00)00035-8 · Zbl 1039.46052 · doi:10.1016/S0393-0440(00)00035-8
[14] DOI: 10.1007/BF02101183 · Zbl 0859.17017 · doi:10.1007/BF02101183
[15] Connes A., Noncommutative Geometry (1994)
[16] DOI: 10.1007/BF00429997 · Zbl 0767.55005 · doi:10.1007/BF00429997
[17] DOI: 10.1023/A:1007643618406 · Zbl 0957.53047 · doi:10.1023/A:1007643618406
[18] Fedosov B. V., Deformation Quantization and Index Theory (1996) · Zbl 0867.58061
[19] DOI: 10.1023/A:1026577414320 · Zbl 0983.53065 · doi:10.1023/A:1026577414320
[20] DOI: 10.1016/S0022-4049(97)00041-8 · Zbl 0938.17015 · doi:10.1016/S0022-4049(97)00041-8
[21] DOI: 10.1007/BF00400441 · Zbl 0522.58019 · doi:10.1007/BF00400441
[22] DOI: 10.1016/S0393-0440(98)00045-X · Zbl 1024.53057 · doi:10.1016/S0393-0440(98)00045-X
[23] DOI: 10.1016/S0393-0440(01)00053-5 · Zbl 1075.53097 · doi:10.1016/S0393-0440(01)00053-5
[24] DOI: 10.1023/A:1007489220519 · Zbl 0943.53052 · doi:10.1023/A:1007489220519
[25] DOI: 10.1023/A:1007555725247 · Zbl 0945.18008 · doi:10.1023/A:1007555725247
[26] Lichnerowicz A., C. R. Acad. Sci., Paris, Ser. I 306 pp 133–
[27] DOI: 10.1007/BF02099427 · Zbl 0887.58050 · doi:10.1007/BF02099427
[28] DOI: 10.1016/0001-8708(91)90057-E · Zbl 0734.58011 · doi:10.1016/0001-8708(91)90057-E
[29] DOI: 10.1023/A:1007452215293 · Zbl 0995.53057 · doi:10.1023/A:1007452215293
[30] Rieffel M. A., Mem. Am. Math. Soc. 106
[31] Sternheimer D., Particles, Fields, and Gravitation, in: Deformation Quantization: Twenty Years After (1998) · Zbl 0977.53082
[32] Stein E. M., Princeton Mathematical Series, in: Harmonic Analysis Real-Variable Methods, Orthogonality, & Oscillatory Integrals (1993) · doi:10.1515/9781400883929
[33] DOI: 10.1023/A:1010838604927 · Zbl 1008.19002 · doi:10.1023/A:1010838604927
[34] DOI: 10.1007/s002200050788 · Zbl 0976.81019 · doi:10.1007/s002200050788
[35] Weinstein A., Séminaire Bourbaki 46ème année 789
[36] DOI: 10.1016/S0393-0440(97)80011-3 · Zbl 0902.58013 · doi:10.1016/S0393-0440(97)80011-3
[37] A. Weinstein and P. Xu, Hochschild cohomology and characterisic classes for star-products, Geometry of differential equations. Dedicated to V. I. Arnold on the occasion of his 60th birthday, eds. A. Khovanskij, A. Varchenko and V. Vassiliev (American Mathematical Society, Providence, 1998) pp. 177–194.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.