×

Traces for star products on the dual of a Lie algebra. (English) Zbl 1129.53305

Summary: We describe all traces for the BCH star-product on the dual of a Lie algebra. First we show by an elementary argument that the BCH as well as the Kontsevich star-product are strongly closed if and only if the Lie algebra is unimodular. In a next step we show that the traces of the BCH star-product are given by the ad-invariant functionals. Particular examples are the integration over coadjoint orbits. We show that for a compact Lie group and a regular orbit one can even achieve that this integration becomes a positive trace functional. In this case we explicitly describe the corresponding GNS representation. Finally we discuss how invariant deformations on a group can be used to induce deformations of spaces where the group acts on.

MSC:

53D55 Deformation quantization, star products
17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B63 Poisson algebras
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] DOI: 10.1023/A:1007610715981 · Zbl 1017.53073
[2] DOI: 10.1023/A:1007618914771
[3] DOI: 10.1007/BF00400978 · Zbl 0567.58011
[4] DOI: 10.1016/0003-4916(78)90224-5 · Zbl 0377.53024
[5] DOI: 10.1088/0264-9381/14/1A/008 · Zbl 0881.58021
[6] DOI: 10.1143/PTPS.144.1
[7] DOI: 10.1007/s002200050774 · Zbl 0961.53046
[8] DOI: 10.1007/s002200050481 · Zbl 0968.53056
[9] DOI: 10.1016/S0393-0440(98)00041-2 · Zbl 0989.53060
[10] DOI: 10.1023/A:1007481019610 · Zbl 0951.53057
[11] DOI: 10.1007/s002200050402 · Zbl 0989.53057
[12] DOI: 10.1023/A:1007661703158 · Zbl 0982.53073
[13] DOI: 10.1016/S0393-0440(00)00035-8 · Zbl 1039.46052
[14] DOI: 10.1007/BF02101183 · Zbl 0859.17017
[15] Connes A., Noncommutative Geometry (1994)
[16] DOI: 10.1007/BF00429997 · Zbl 0767.55005
[17] DOI: 10.1023/A:1007643618406 · Zbl 0957.53047
[18] Fedosov B. V., Deformation Quantization and Index Theory (1996) · Zbl 0867.58061
[19] DOI: 10.1023/A:1026577414320 · Zbl 0983.53065
[20] DOI: 10.1016/S0022-4049(97)00041-8 · Zbl 0938.17015
[21] DOI: 10.1007/BF00400441 · Zbl 0522.58019
[22] DOI: 10.1016/S0393-0440(98)00045-X · Zbl 1024.53057
[23] DOI: 10.1016/S0393-0440(01)00053-5 · Zbl 1075.53097
[24] DOI: 10.1023/A:1007489220519 · Zbl 0943.53052
[25] DOI: 10.1023/A:1007555725247 · Zbl 0945.18008
[26] Lichnerowicz A., C. R. Acad. Sci., Paris, Ser. I 306 pp 133–
[27] DOI: 10.1007/BF02099427 · Zbl 0887.58050
[28] DOI: 10.1016/0001-8708(91)90057-E · Zbl 0734.58011
[29] DOI: 10.1023/A:1007452215293 · Zbl 0995.53057
[30] Rieffel M. A., Mem. Am. Math. Soc. 106
[31] Sternheimer D., Particles, Fields, and Gravitation, in: Deformation Quantization: Twenty Years After (1998) · Zbl 0977.53082
[32] Stein E. M., Princeton Mathematical Series, in: Harmonic Analysis Real-Variable Methods, Orthogonality, & Oscillatory Integrals (1993)
[33] DOI: 10.1023/A:1010838604927 · Zbl 1008.19002
[34] DOI: 10.1007/s002200050788 · Zbl 0976.81019
[35] Weinstein A., Séminaire Bourbaki 46ème année 789
[36] DOI: 10.1016/S0393-0440(97)80011-3 · Zbl 0902.58013
[37] A. Weinstein and P. Xu, Hochschild cohomology and characterisic classes for star-products, Geometry of differential equations. Dedicated to V. I. Arnold on the occasion of his 60th birthday, eds. A. Khovanskij, A. Varchenko and V. Vassiliev (American Mathematical Society, Providence, 1998) pp. 177–194.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.