Beta-coalescents and continuous stable random trees. (English) Zbl 1129.60067

Abstract: Coalescents with multiple collisions, also known as \(\Lambda\)-coalescents, were introduced by Pitman and Sagitov in 1999. These processes describe the evolution of particles that undergo stochastic coagulation in such a way that several blocks can merge at the same time to form a single block. In the case that the measure \(\Lambda\) is the Beta\((2-\alpha, \alpha)\) distribution, they are also known to describe the genealogies of large populations where a single individual can produce a large number of offspring. Here, we use a recent result of Birkner et al. to prove that Beta-coalescents can be embedded in continuous stable random trees, about which much is known due to the recent progress of Duquesne and Le Gall. Our proof is based on a construction of the Donnelly-Kurtz lookdown process using continuous random trees, which is of independent interest. This produces a number of results concerning the small-time behavior of Beta-coalescents. Most notably, we recover an almost sure limit theorem of the present authors for the number of blocks at small times and give the multifractal spectrum corresponding to the emergence of blocks with atypical size. Also, we are able to find exact asymptotics for sampling formulae corresponding to the site frequency spectrum and the allele frequency spectrum associated with mutations in the context of population genetics.


60J25 Continuous-time Markov processes on general state spaces
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60J85 Applications of branching processes
60K99 Special processes
92D10 Genetics and epigenetics
Full Text: DOI arXiv


[1] Aldous, D. (1991). The continuum random tree. I. Ann. Probab. 19 1–28. · Zbl 0722.60013
[2] Aldous, D. (1993). The continuum random tree. III. Ann. Probab. 21 248–289. · Zbl 0791.60009
[3] Andrews, G. E., Askey, R. and Roy, R. (1999). Special Functions . Cambridge Univ. Press. · Zbl 0920.33001
[4] Arratia, R., Barbour, A. and Tavaré, S. (2003). Logarithmic Combinatorial Structures : A Probabilistic Approach . EMS, Zürich. · Zbl 1040.60001
[5] Athreya, K. B. and Ney, P. E. (1972). Branching Processes . Springer, New York–Heidelberg. · Zbl 0259.60002
[6] Berestycki, J. (2003). Multifractal spectra of fragmentation processes. J. Statist. Phys. 113 411–430. · Zbl 1033.82012
[7] Berestycki, J., Berestycki, N. and Limic, V. (2007). The asymptotic number of blocks in a Lambda coalescent. · Zbl 1247.60110
[8] Berestycki, J., Berestycki, N. and Schweinsberg, J. (2006). Small-time behavior of beta-coalescents. Preprint. Available at http://front.math.ucdavis.edu/math.PR/0601032. · Zbl 1214.60034
[9] Bertoin, J. (1999). Subordinators: Examples and applications. Ecole d ’ été de Probabilités de St-Flour XXVII . Lecture Notes in Math. 1717 1–91. Springer, Berlin. · Zbl 0955.60046
[10] Bertoin, J. and Le Gall, J.-F. (2000). The Bolthausen–Sznitman coalescent and the genealogy of continuous-state branching processes. Probab. Theory Related Fields 117 249–266. · Zbl 0963.60086
[11] Bertoin, J. and Le Gall, J.-F. (2003). Stochastic flows associated to coalescent processes. Probab. Theory Related Fields 126 261–288. · Zbl 1023.92018
[12] Bertoin, J. and Le Gall, J.-F. (2005). Stochastic flows associated to coalescent processes II: Stochastic differential equations. Ann. Inst. H. Poincaré Probab. Statist. 41 307–333. · Zbl 1119.60024
[13] Bertoin, J. and Le Gall, J.-F. (2005). Stochastic flows associated to coalescent processes III: Infinite population limits. Illinois J. Math. 50 147–181. · Zbl 1110.60026
[14] Birkner, M., Blath, J., Capaldo, M., Etheridge, A., Möhle, M., Schweinsberg, J. and Wakolbinger, A. (2005). Alpha-stable branching and beta-colaescents. Electron. J. Probab. 10 303–325. · Zbl 1066.60072
[15] Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle’s probability cascades and an abstract cavity method. Comm. Math. Phys. 197 247–276. · Zbl 0927.60071
[16] Donnelly, P. and Kurtz, T. (1999). Particle representations for measure-valued population models. Ann. Probab. 27 166–205. · Zbl 0956.60081
[17] Duquesne, T. and Le Gall, J.-F. (2002). Random Trees , Lévy Processes , and Spatial Branching Processes. Astérisque 281 . · Zbl 1037.60074
[18] Duquesne, T. and Le Gall, J.-F. (2005). Probabilistic and fractal aspects of Lévy trees. Probab. Theory Related Fields 131 553–603. · Zbl 1070.60076
[19] Durrett, R. (2004). Probability : Theory and Examples , 3rd ed. Duxbury Press, Belmont, CA. · Zbl 1202.60001
[20] Durrett, R. and Schweinsberg, J. (2005). A coalescent model for the effect of advantageous mutations on the genealogyof a population. Stochastic Process. Appl. 115 1628–1657. · Zbl 1082.92031
[21] Eldon, B. and Wakeley, J. (2006). Coalescent processes when the distribution of offspring number among individuals is highly skewed. Genetics 172 2621–2633.
[22] Etheridge, A. (2000). An Introduction to Superprocesses . Amer. Math. Soc., Providence, RI. · Zbl 0971.60053
[23] Evans, S. N. (2000). Kingman’s coalescent as a random metric space. In Stochastic Models : A Conference in Honour of Professor Donald A. Dawson (L. G. Gorostiza and B. G. Ivanoff, eds.) 105–114. Amer. Math. Soc., Providence, RI. · Zbl 0955.60010
[24] Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theor. Popul. Biol. 3 87–112. · Zbl 0245.92009
[25] Fu, Y. X. and Li, W. H. (1999). Coalescent theory and its applications in population genetics. In Statistics in Genetics (M. E. Halloran and S. Geisser, eds.). Springer, Berlin. · Zbl 0978.62102
[26] Gnedin, A., Hansen, B. and Pitman, J. (2007). Notes on the occupancy problem with infinitely many boxes: General asymptotics and power laws. Preprint. Available at http://front.math.ucdavis.edu/math.PR/0701718. · Zbl 1189.60050
[27] Grey, D. R. (1974). Asymptotic behaviour of continuous-time continuous-state branching processes. J. Appl. Probab. 11 669–677. JSTOR: · Zbl 0301.60060
[28] Griffiths, R. C. and Lessard, S. (2005). Ewens’ sampling formula and related formulae: Combinatorial proofs, extension to variable population size, and applications to age of alleles. Theor. Popul. Biol. 68 167–177. · Zbl 1085.92027
[29] Hein, J., Schierup, M., Wiuf, C. and Schierup, M. H. (2005). Gene Genealogies , Variation and Evolution : A Primer in Coalescent Theory . Oxford Univ. Press. · Zbl 1113.92048
[30] Karlin, S. (1967). Central limit theorems for certain infinite urn schemes. J. Math. Mech. 17 373–401. · Zbl 0154.43701
[31] Kimura, M. (1969). The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics 61 893–903.
[32] Kimura, M. and Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics 49 725–738. · Zbl 0134.38103
[33] Kingman, J. F. C. (1982). The coalescent. Stochastic Process. Appl. 13 235–248. · Zbl 0491.60076
[34] Kingman, J. F. C. (1982). On the genealogies of large populations. J. Appl. Probab. 19A 27–43. · Zbl 0516.92011
[35] Lamperti, J. (1967). The limit of a sequence of branching processes. Z. Wahrsch. Verw. Gebiete 7 271–288. · Zbl 0154.42603
[36] Le Gall, J.-F. and Le Jan, Y. (1998). Branching processes in Lévy processes: The exploration process. Ann. Probab. 26 213–252. · Zbl 0948.60071
[37] Liu, Q. (2001). Local dimensions of the branching measure on a Galton–Watson tree. Ann. Inst. H. Poincaré Probab. Statist. 37 195–222. · Zbl 0986.60080
[38] Lyons, R. and Peres, Y. Probability on trees and networks. Available at http://mypage.iu.edu/ rdlyons/prbtree/prbtree.html.
[39] Möhle, M. (2006). On sampling distributions for coalescent processes with simultaneous multiple collisions. Bernoulli 12 35–53. · Zbl 1099.92052
[40] Möhle, M. and Sagitov, S. (2001). A classification of coalescent processes for haploid exchangeable population models. Ann. Probab. 29 1547–1562. · Zbl 1013.92029
[41] Mörters, P. and Shieh, N. R. (2005). Multifractal analysis of branching measure on a Galton–Watson tree. In Proc. Internat. Conference of Chinese Mathematicians , Hong Kong 2004 . · Zbl 1062.60090
[42] Neveu, J. and Pitman, J. (1989). The branching process in a Brownian excursion. Séminaire de Probabilités XXIII . Lecture Notes in Math. 1372 248–257. Springer, Berlin. · Zbl 0741.60081
[43] Pitman, J. (1997). Partition structures derived from Brownian motion and stable subordinators. Bernoulli 3 79–96. · Zbl 0882.60081
[44] Pitman, J. (1999). Brownian motion, bridge, excursion and meander characterized by sampling at independent uniform times. Electron. J. Probab. 4 1–33. · Zbl 0935.60068
[45] Pitman, J. (1999). Coalescents with multiple collisions. Ann. Probab. 27 1870–1902. · Zbl 0963.60079
[46] Pitman, J. (2006). Combinatorial stochastic processes. Ecole d ’ Eté de Probabilités de Saint-Flour XXXII-2002 . Lecture Notes in Math. 1875 . Springer, Berlin. · Zbl 1103.60004
[47] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion . Springer, Berlin. · Zbl 0917.60006
[48] Rouault, A. (1978). Lois de Zipf et sources Markoviennes. Ann. Inst. H. Poincaré B 14 169–188. · Zbl 0404.60072
[49] Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Probab. 36 1116–1125. · Zbl 0962.92026
[50] Schweinsberg, J. (2000). A necessary and sufficient condition for the \(\Lambda\)-coalescent to come down from infinity. Electron. Comm. Probab. 5 1–11. · Zbl 0953.60072
[51] Schweinsberg, J. (2003). Coalescent processes obtained from supercritical Galton–Watson processes. Stochastic Process. Appl. 106 107–139. · Zbl 1075.60571
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.