×

zbMATH — the first resource for mathematics

The random average process and random walk in a space-time random environment in one dimension. (English) Zbl 1129.60097
This paper studies the so-called Random Average Process (RAP) using techniques that involve limiting behaviors of the quenched-mean process for a random walk in a space-time random environment. RAP processes design a class of (non-diffusive) 1d-asymmetric interacting systems whose random evolution produces fluctuations of order \(n^{1/4}\). It roughly speaking describes an interface between two phases on the plane. More formally, a real-valued function called, the height function, evolves on the integers by jumping to random convex combinations of its neighbors.
On the contrary to previous works on the subject, the results stated for the RAP in this paper concern the general hydrodynamic limit framework, modulo a few assumptions on the initial increments of the random height function. Its analysis uses a dual description in terms of backward random walks in a space-time environment, that fluctuates also at the scale of \(n^{1/4}\). At this scale, the limits of the fluctuations are described by a family of Gaussian processes and in the case of known product-form invariant distributions, by a two-parameter process whose time marginals consist of fractional Brownian motions with Hurst parameter \(1/4\). Tightness at the level of processes is left to the reader, except in the central case of the forward quenched means of random walks, for which the authors achieve it by computing a bound on the 6th moment of the process environment.
Related results for other sub-diffusive processes, e.g., the Hammersley process, are also reviewed in this paper together with discussions around some universality questions.

MSC:
60K37 Processes in random environments
82C22 Interacting particle systems in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aldous D., Diaconis P. (1995) Hammersley’s interacting particle process and longest increasing subsequences. Probab. Theory Related Fields 103(2): 199–213 · Zbl 0836.60107
[2] Aldous D., Diaconis P. (1999) Longest increasing subsequences: from patience sorting to the Baik-Deift-Johansson theorem. Bull. Amer. Math. Soc. (N.S.) 36(4): 413–432 · Zbl 0937.60001
[3] Baik J., Deift P., Johansson K. (1999) On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc. 12(4): 1119–1178 · Zbl 0932.05001
[4] Balázs M. (2003) Growth fluctuations in a class of deposition models. Ann. Inst. H. Poincaré Probab. Statist. 39(4): 639–685 · Zbl 1029.60075
[5] Bernabei M.S. (2001) Anomalous behaviour for the random corrections to the cumulants of random walks in fluctuating random media. Probab. Theory Related Fields 119(3): 410–432 · Zbl 0989.60043
[6] Boldrighini C., Pellegrinotti A. T /4-noise for random walks in dynamic environment on \(\mathbb{Z}\) . Mosc. Math. J. 1(3), 365–380 470–471 (2001) · Zbl 1006.60100
[7] Burkholder D.L. (1973) Distribution function inequalities for martingales. Ann. Probab. 1, 19–42 · Zbl 0301.60035
[8] Chung, K.L. Markov chains with stationary transition probabilities. In: Die Grundlehren der mathematischen Wissenschaften, Band 104. New York: Springer-Verlag Second edition, 1967
[9] De Masi A., Presutti E. (1991) Mathematical methods for hydrodynamic limits, Volume 1501 of Lecture Notes in Mathematics. Springer-Verlag, Berlin · Zbl 0754.60122
[10] Deift P. (2000) Integrable systems and combinatorial theory. Notices Amer. Math. Soc. 47(6): 631–640 · Zbl 1041.05004
[11] Durrett R. (2004) Probability: theory and examples. Duxbury Advanced Series. Brooks/Cole–Thomson, Belmont, CA, Third edition
[12] Ethier S.N., Kurtz T.G. (1986) Markov processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. John Wiley & Sons Inc., New York · Zbl 0592.60049
[13] Ferrari P.A., Fontes L.R.G. (1994) Current fluctuations for the asymmetric simple exclusion process. Ann. Probab. 22(2): 820–832 · Zbl 0806.60099
[14] Ferrari, P.A., Fontes, L.R.G. Fluctuations of a surface submitted to a random average process. Electron. J. Probab. 3, no. 6, 34 pp., (1998) (electronic) · Zbl 0903.60089
[15] Ferrari, P.L., Spohn, H Scaling Limit for the Space-Time Covariance of the Stationary Totally Asymmetric Simple Exclusion Process. Commum. Math. Phys. (2006) (in press) · Zbl 1118.82032
[16] Gravner J., Tracy C.A., Widom H. (2001) Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Stat. Phys. 102(5–6): 1085–1132 · Zbl 0989.82030
[17] Groeneboom P. (2002) Hydrodynamical methods for analyzing longest increasing subsequences. J. Comput. Appl. Math. 142(1): 83–105 · Zbl 1001.60010
[18] Hammersley, J.M. A few seedlings of research. In: Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. I: Theory of statistics, Berkeley, Univ. California Press, 1972, pp. 345–394
[19] Johansson K. (2000) Shape fluctuations and random matrices. Commun. Math. Phys. 209(2): 437–476 · Zbl 0969.15008
[20] Johansson, K. Discrete orthogonal polynomial ensembles and the Plancherel measure. Ann. Math. (2) 153(1), 259–296 (2001) · Zbl 0984.15020
[21] Kipnis C., Landim C. (1999) Scaling limits of interacting particle systems. Volume 320 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, Berlin · Zbl 0927.60002
[22] Liggett T.M. (1985) Interacting particle systems. Volume 276 of fcGrundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer-Verlag, New York · Zbl 0559.60078
[23] Liggett T.M. (1999) Stochastic interacting systems: contact, voter and exclusion processes. Volume 324 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles f Mathematical Sciences], Springer-Verlag, Berlin · Zbl 0949.60006
[24] Rassoul-Agha, F., Seppäläinen, T. An almost sure invariance principle for random walks in a space-time random environment. Probab. The. Rel. Fields 133, no. 3, 299–314 (2005) · Zbl 1088.60094
[25] Rezakhanlou F. (2002) A central limit theorem for the asymmetric simple exclusion process. Ann. Inst. H. Poincaré Probab. Statist. 38(4): 437–464 · Zbl 1001.60031
[26] Seppäläinen, T. A microscopic model for the Burgers equation and longest increasing subsequences. Electron. J. Probab. 1, no. 5, approx. 51 pp., (1996) (electronic) · Zbl 0891.60093
[27] Seppäläinen T. (1998) Exact limiting shape for a simplified model of first-passage percolation on the plane. Ann. Probab. 26(3): 1232–1250 · Zbl 0935.60093
[28] Seppäläinen T. (1998) Large deviations for increasing sequences on the plane. Probab. Th. Rel. Fields 112(2): 221–244 · Zbl 0919.60040
[29] Seppäläinen T. (2002) Diffusive fluctuations for one-dimensional totally asymmetric interacting random dynamics. Commun. Math. Phys. 229(1): 141–182 · Zbl 1043.82028
[30] Seppäläinen T. (2005) Second-order fluctuations and current across characteristic for a one-dimensional growth model of independent random walks. Ann. Probab. 33(2): 759–797 · Zbl 1108.60083
[31] Spitzer F. (1976) Principles of random walk. Springer-Verlag, New York · Zbl 0359.60003
[32] Spohn H. (1991) Large scale dynamics of interacting particles. Springer-Verlag, Berlin · Zbl 0742.76002
[33] Varadhan, S.R.S. Lectures on hydrodynamic scaling. In Hydrodynamic limits and related topics (Toronto, ON, 1998), Volume 27 of Fields Inst. Commun., Providence, RI: Amer. Math. Soc., 2000, pp. 3–40 · Zbl 1060.82514
[34] Walsh, J.B. An introduction to stochastic partial differential equations. In: École d’été de probabilités de Saint-Flour, XIV–1984, Volume 1180 of Lecture Notes in Math., Berlin: Springer, 1986, pp. 265–439
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.