×

An efficient algorithm for the generalized centro-symmetric solution of matrix equation \(AXB = C\). (English) Zbl 1129.65030

The authors construct an iterative algorithm for solving the linear matrix equation \(A X B = C\) for a generalized centro-symmetric matrix \(X\) and show that, in the absence of roundoff errors, a solution of the matrix equation can be obtained within finite iteration steps. Numerical examples are used to show that the proposed method is efficient.

MSC:

65F30 Other matrix algorithms (MSC2010)
15A24 Matrix equations and identities
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Golub, G.H., Van Loan, C.F.: Matrix computations [M]. John Hopkins University Press, Baltimore, MD (1996)
[2] Zhou, F.Z., Hu, X.Y., Zhang, L.: The solvability conditions for the inverse eigenvalue problems of centro-symmetric matrices. Linear Algebra Appl. 364, 147–160 (2003) · Zbl 1028.15012 · doi:10.1016/S0024-3795(02)00550-5
[3] Dai, H.: On the symmetric solutions of linear matrix equations. Linear Algebra Appl. 131, 1–7 (1990) · Zbl 0712.15009 · doi:10.1016/0024-3795(90)90370-R
[4] Chu, K.E.: Symmetric solutions of linear matrix equations by matrix decompositions. Linear Algebra Appl. 119, 35–50 (1989) · Zbl 0688.15003 · doi:10.1016/0024-3795(89)90067-0
[5] Mitra, S.K.: Common solutions to a pair of linear matrix equations A 1 XB 1=C 1, A 2 XB 2=C 2. Proc. Camb. Philos. Soc. 74, 213–216 (1973) · Zbl 0262.15010 · doi:10.1017/S030500410004799X
[6] Peng, X.Y., Hu, X.Y., Zhang, L.: The reflexive and anti-reflexive solutions of the matrix equation A * XB=C. J. Comput. Appl. Math. 200, 749–760 (2007) · Zbl 1115.15014 · doi:10.1016/j.cam.2006.01.024
[7] Peng, Y.X., Hu, X.Y., Zhang, L.: An iteration method for the symmetric solutions and the optimal approximation solution of the matrix equation AXB=C. Appl. Math. Comput. 160, 763–777 (2005) · Zbl 1068.65056
[8] Peng, Y.X., Hu, X.Y., Zhang, L.: An iteration method for symmetric solutions and optimal approximation solution of the system of matrix equations A 1 XB 1=C 1, A 2 XB 2=C 2. Appl. Math. Comput. 183, 1127–1137 (2006) · Zbl 1134.65032 · doi:10.1016/j.amc.2006.05.124
[9] Peng, Z.Y.: An iterative method for the least-squares symmetric solution of the linear matrix equation AXB=C. Appl. Math. Comput. 170, 711–723 (2005) · Zbl 1081.65039 · doi:10.1016/j.amc.2004.12.032
[10] Xie, D.X., Hu, X.Y., Sheng, Y.P.: The solvability conditions for the inverse eigenproblems of symmetric and generalized centro-symmetric matrices and their approximations. Linear Algebra Appl. 418, 142–152 (2006) · Zbl 1109.65034 · doi:10.1016/j.laa.2006.01.027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.