zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Natural convection in shallow water. (English) Zbl 1129.76049
Summary: Starting from three-dimensional Boussinesq model and taking the limit as the domain thickness tends to zero, we derive rigorously a two-dimensional model for natural convection in shallow water. The model reduces to a degenerate elliptic equation for pressure, and allows to derive an explicit formula for horizontal components of velocity and for the vertical diffusion of the vertical component. The macroscopic flow is driven by temperature variations as well as by the bottom topography.

76R10Free convection (fluid mechanics)
80A20Heat and mass transfer, heat flow
86A05Hydrology, hydrography, oceanography
Full Text: DOI
[1] Batchelor, G. K.: An introduction to fluid mechanics. (1970)
[2] Bernardi, C.; Métivet, B.; Pernaud-Thomas, B.: Couplage des équations de Navier -- Stokes et de la chaleur: le modèle et son approximation par éléments finis. RAIRO modél. Math. anal. Numér. 29, 871-921 (1995) · Zbl 0839.76016
[3] Boussinesq, J.: Théorie analytique de la chaleur. (1903) · Zbl 34.0887.05
[4] D. Brech, J. Lemoine, J. Simon, A vertical diffusion model for lakes, SIAM J. Math. Anal. 30 (3) 603 -- 622. · Zbl 0930.35120
[5] Brech, D.; Lemoine, J.; Simon, J.: Modelization of shallow lakes and seas. Proceedings of STAMM 98, Chapman and Hall monographs and surveys in pure and applied mathematics 106, 260-271 (2000) · Zbl 1100.86500
[6] Jacobs, A. F. G.; Jetten, T. H.; Lucassen, D. C.; Heuskinveld, B.; Nieveen, J. P.: Daily temperature variation in a natural shallow water body. Agric. forest meteorol. 88, 269-277 (1997)
[7] L. Landau, E. Lifchitz, Mécanique des fluides, Elipses, 3ème édition, 1994.
[8] Losordo, T. M.; Piedrahita, R. H.: Modelling temperature variation and thermal stratification in shallow aquaculture ponds. Ecological modelling 54, 189-226 (1991)
[9] A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean, Courant Lecture Notes, vol. 9, American Mathematical Society, Providence, RI, 2003. · Zbl 1278.76004
[10] Marušić, S.; Marušić-Paloka, E.: Two-scale convergence for thin domains and its applications to some lower-dimensional models in fluid mechanics. Asymptotic anal. 23, 23-58 (2000)
[11] Marušić-Paloka, E.: Solvability of the Navier -- Stokes system with L2 boundary data. Appl. math. Optim. 41, 365-375 (2000) · Zbl 0952.35090
[12] Da Rocha, M. Santos; Rojas-Medar, M. A.; Rojas-Medar, M. D.: On the existence of the stationary solution to the equations of natural convection with boundary data in L2. Proc. R. Soc. lond. Ser. A, math. Phys. eng. Sci. 459, No. 2031, 609-621 (2003) · Zbl 1047.76119