×

On topological M-theory. (English) Zbl 1129.81064

Summary: We construct a gauge-fixed action for topological membranes on \(G_2\)-manifolds such that its bosonic part is the standard membrane theory in a particular gauge. We prove that the path integral in this gauge localizes on associative submanifolds. Moreover on \(M\times S^1\), the theory naturally reduces to the standard A-model on Calabi-Yau manifold and to a membrane theory localized on special Lagrangian submanifolds. We discuss some properties of topological membrane theory on \(G_2\)-manifolds. We also generalize our construction to topological \(p\)-branes on special manifolds by exploring a relation between vector cross product structures and TFTs.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
81T45 Topological field theories in quantum mechanics
83E30 String and superstring theories in gravitational theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Acharya, B. S.; O’loughlin, M.; Spence, B. J.: Nucl. phys. B. 503, 657 (1997)
[2] Bagger, J.; Lambert, N.: Jhep. 0802, 105 (2008)
[3] Basu, A.; Harvey, J. A.: Nucl. phys. B. 713, 136 (2005)
[4] Baulieu, L.; Singer, I. M.: Nucl. phys. B (Proc. Suppl.). 5, 12 (1988)
[5] Baulieu, L.; Singer, I. M.: Commun. math. Phys.. 125, 227 (1989)
[6] Baulieu, L.; Kanno, H.; Singer, I. M.:
[7] Benna, M.; Klebanov, I.; Klose, T.; Smedback, M.:
[8] Berman, D. S.; Copland, N. B.: Phys. lett. B. 639, 553 (2006)
[9] Blau, M.; Thompson, G.: Phys. lett. B. 415, 242 (1997)
[10] Bonelli, G.; Bonora, L.; Terna, S.; Tomasiello, A.:
[11] Bonelli, G.; Zabzine, M.: Jhep. 0509, 015 (2005)
[12] Bonelli, G.; Tanzini, A.; Zabzine, M.: Adv. theor. Math. phys.. 10, 239 (2006)
[13] Bonelli, G.; Tanzini, A.; Zabzine, M.: Jhep. 0703, 023 (2007)
[14] Brown, R. B.; Gray, A.: Comment. math. Helv.. 42, 222 (1967)
[15] Chu, C. S.; Ho, P. M.; Matsuo, Y.; Shiba, S.:
[16] Curtright, T.; Fairlie, D.; Zachos, C. K.: Phys. lett. B. 405, 37 (1997)
[17] Curtright, T.; Zachos, C. K.: Phys. rev. D. 68, 085001 (2003)
[18] Curtright, T.:
[19] De Medeiros, P.; Figueroa-O’farrill, J. M.; Mendez-Escobar, E.:
[20] De Wit, B.; Hoppe, J.; Nicolai, H.: Nucl. phys. B. 305, 545 (1988)
[21] Gauntlett, J. P.; Lambert, N. D.; West, P. C.: Commun. math. Phys.. 202, 571 (1999)
[22] Gray, A.: Trans. am. Math. soc.. 148, 625 (1970)
[23] Gustavsson, A.: Jhep. 0804, 083 (2008)
[24] Hosomichi, K.; Lee, K. M.; Lee, S.:
[25] Krishnan, C.; Maccaferri, C.: Jhep. 0807, 005 (2008)
[26] Ho, P. M.; Hou, R. C.; Matsuo, Y.: Jhep. 0806, 020 (2008)
[27] Nahm, W.: Phys. lett. B. 90, 413 (1980)
[28] Nambu, Y.: Phys. rev. D. 7, 2405 (1973)
[29] Papadopoulos, G.: Class. quantum grav.. 25, 142002 (2008)
[30] Park, J. H.; Sochichiu, C.:
[31] Schwarz, J. H.: Jhep. 0411, 078 (2004)
[32] Takhtajan, L.: Commun. math. Phys.. 160, 295 (1994)
[33] Ward, R. S.: Phys. lett. B. 234, 81 (1990)
[34] Witten, E.: Commun. math. Phys.. 117, 353 (1988)
[35] Witten, E.: Commun. math. Phys.. 118, 411 (1988)
[36] Zachos, C. K.: Phys. lett. B. 570, 82 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.