×

zbMATH — the first resource for mathematics

Bose-Einstein condensates in the lowest Landau level: Hamiltonian dynamics. (English) Zbl 1129.82023

MSC:
82C10 Quantum dynamics and nonequilibrium statistical mechanics (general)
35P20 Asymptotic distributions of eigenvalues in context of PDEs
35Q40 PDEs in connection with quantum mechanics
47G30 Pseudodifferential operators
47N55 Applications of operator theory in statistical physics (MSC2000)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1126/science.1060182
[2] Abraham R., Foundations of Mechanics (1985)
[3] Aftalion A., Progress in Nonlinear Differential Equations and Their Applications 67, in: Vortices in Bose–Einstein Condensates (2006)
[4] DOI: 10.1137/050632889 · Zbl 1174.35104
[5] DOI: 10.1103/PhysRevA.71.023611
[6] DOI: 10.1103/PhysRevA.73.011601
[7] Aftalion A., J. Funct. Anal.
[8] DOI: 10.1007/978-1-4757-2063-1
[9] DOI: 10.1002/cpa.3160140303 · Zbl 0107.09102
[10] Benettin G., Lecture Notes in Mathematics 1861, in: Hamiltonian Dynamic – Theory and Applications (2005)
[11] DOI: 10.1103/PhysRevLett.92.160405
[12] DOI: 10.1016/0022-1236(91)90022-W · Zbl 0743.46018
[13] Castin Y., Les Houches Summer Schools 72, in: Coherent Atomic Matter Waves (2001)
[14] Chernoff P. R., Lectures Notes in Mathematics 425, in: Properties of Infinite Dimensional Hamiltonian Systems (1974) · Zbl 0301.58016
[15] DOI: 10.1098/rspa.1999.0325 · Zbl 0931.70016
[16] DOI: 10.1112/S0024609302001248 · Zbl 1052.47042
[17] DOI: 10.1006/jfan.2000.3681 · Zbl 1034.81016
[18] DOI: 10.1002/cpa.20004 · Zbl 1054.35035
[19] DOI: 10.1515/9781400882427 · Zbl 0682.43001
[20] DOI: 10.1103/PhysRevB.29.5617
[21] DOI: 10.1007/BF02392573 · Zbl 0983.47026
[22] DOI: 10.5802/afst.1121
[23] Helffer B., Lecture Notes in Mathematics 1862, in: Hypoelliptic Estimates and Spectral Theory for Fokker–Planck Operators and Witten Laplacians (2005) · Zbl 1072.35006
[24] DOI: 10.1007/s00205-003-0276-3 · Zbl 1139.82323
[25] DOI: 10.1103/PhysRevLett.87.060403
[26] DOI: 10.1016/0370-1573(85)90028-6 · Zbl 0717.76051
[27] DOI: 10.1007/BF02577134 · Zbl 0716.34083
[28] DOI: 10.1007/s00220-006-1524-9 · Zbl 1233.82004
[29] Lieb E. H., Phys. Rev. A 61 pp 0436021–
[30] DOI: 10.1007/s002200100533 · Zbl 0996.82010
[31] DOI: 10.1007/978-1-4757-4495-8
[32] E. Nelson, Mathematical Theory of Elementary Particles (MIT Press, 1966) pp. 69–73.
[33] Reed M., Method of Modern Mathematical Physics (1975)
[34] DOI: 10.1103/PhysRevLett.92.040404
[35] DOI: 10.1103/PhysRevLett.89.030403
[36] DOI: 10.1103/PhysRevA.72.021606
[37] DOI: 10.1137/S0036144595295284 · Zbl 0896.15006
[38] DOI: 10.1103/PhysRevLett.93.190401
[39] DOI: 10.1007/s00220-002-0683-6 · Zbl 1021.35077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.