Pradhan, Anirudh; Pandey, Purnima; Kumar Rai, Kanchan Magnetized anisotropic cosmological models with varying \(\Lambda\). (English) Zbl 1129.83359 Czech. J. Phys. 56, No. 3, 303-313 (2006). Summary: Some anisotropic homogeneous cosmological models with electromagnetic field are obtained in presence of a perfect fluid. The source of the magnetic field is due to an electric current produced along the \(x\)-axis. Without assuming any ad hoc law, we obtain a cosmological constant as a decreasing function of time which is supported by results from recent supernovae Ia observations. The behaviour of the electromagnetic field tensor together with some physical aspects of the model are also discussed. Cited in 3 Documents MSC: 83F05 Relativistic cosmology Keywords:cosmology; electromagnetic field; variable \(\Lambda\) PDF BibTeX XML Cite \textit{A. Pradhan} et al., Czech. J. Phys. 56, No. 3, 303--313 (2006; Zbl 1129.83359) Full Text: DOI References: [1] S. Weinberg: Rev. Mod. Phys. 61 (1989) 1. · Zbl 1129.83361 [2] S. Weinberg: Gravitation and Cosmology, Wiley, New York, 1972. [3] E.S. Abers and B.W. Lee: Phys. Rep. 9 (1973) 1. [4] P. Langacker: Phys. Rep. 72 (1981) 185. [5] J.A. Frieman and I. Waga: Phys. Rev. D 57 (1998) 4642. [6] R. Carlberg et al.: Astrophys. J. 462 (1996) 32. [7] M. Ozer and M.O. Taha: Nucl. Phys. B 287 (1987) 776. K. Freese, F.C. Adams, J.A. Frieman, and E. Motta: Nucl. Phys. B 287 (1987) 1797. J.C. Carvalho, J.A.S. Lima, and I. Waga: Phys. Rev. D 46 (1992) 2404. V. Silviera and I. Waga: Phys. Rev. D 50 (1994) 4890. [8] B. Ratra and P.J.E. Peebles: Phys. Rev. D 37 (1988) 3406. [9] A.D. Dolgov: in The Very Early Universe (Eds. G.W. Gibbons, S.W. Hawking, and S.T.C. Siklos), Cambridge University Press, Cambridge, 1983. [10] A.D. Dolgov, M.V. Sazhin, and Ya.B. Zeldovich, Basics of Modern Cosmology, Editions Frontiers, 1990. [11] A.D. Dolgov: Phys. Rev. D 55 (1997) 5881. [12] V. Sahni and A. Starobinsky: Int. J. Mod. Phys. D 9 (2000) 373 (gr-qc/9904398). [13] Ya.B. Zeldovich: Sov. Phys.-Uspekhi 11 (1968) 381. [14] S.M. Carroll, W.H. Press, and E.L. Turner: Ann. Rev. Astron. Astrophys. 30 (1992) 499. [15] S. Perlmutter et al.: Astrophys. J. 483 (1997) 565 (astro-ph/9608192); Nature 391 (1998) 51 (astro-ph/9712212); Astrophys. J. 517 (1999) 565 (astro-ph/9608192). [16] A.G. Riess et al.: Astron. J. 116 (1998) 1009 (astro-ph/9805201). [17] A. Vilenkin: Phys. Rep. 121 (1985) 265. · Zbl 0966.83541 [18] P.M. Garnavich et al.: Astrophys. J. 493 (1998a) L53 (astro-ph/9710123); Astrophys. J. 509 (1998b) 74 (astro-ph/9806396). [19] M. Carmeli and T. Kuzmenko: Int. J. Theor. Phys. 41 (2002) 131. S. Behar and M. Carmeli: Int. J. Theor. Phys. 39 (2002) 1375 (astro-ph/0008352). · Zbl 0992.83060 [20] B.P. Schmidt et al.: Astrophys. J. 507 (1998) 46 (astro-ph/9805200). [21] M. Gasperini: Phys. Lett. B 194 (1987) 347; Class. Quant. Grav. 5 (1988) 521. [22] M.S. Berman: Int. J. Theor. Phys. 29 (1990) 567; Int. J. Theor. Phys. 29 (1990) 1419; Phys. Rev. D 43 (1991) 75. M.S. Berman and M.M. Som: Int. J. Theor. Phys. 29 (1990) 1411. M.S. Berman, M.M. Som, and F.M. Gomide: Gen. Rel. Grav. 21 (1989) 287. M.S. Berman and F.M. Gomide: Gen. Rel. Grav. 22 (1990) 625. · Zbl 0699.53090 [23] P.J.E. Peebles and B. Ratra: Astrophys. J. 325 (1988) L17. [24] W. Chen and Y.S. Wu: Phys. Rev. D 41 (1990) 695. [25] Abdussattar and R.G. Vishwakarma: Pramana J. Phys. 47 (1996) 41. [26] J. Gariel and G. Le Denmat: Class. Quant. Grav. 16 (1999) 149. · Zbl 0960.83050 [27] A. Pradhan and A. Kumar: Int. J. Mod. Phys. D 10 (2001) 291. A. Pradhan and V.K. Yadav: Int J. Mod Phys. D 11 (2002) 983. [28] A.-M. M. Abdel-Rahaman: Gen. Rel. Grav. 22 (1990) 655; Phys. Rev. D 45 (1992) 3492. · Zbl 0696.53065 [29] R.G. Vishwakarma: Class. Quant. Grav. 17 (2000) 3833. · Zbl 0971.83086 [30] Ya.B. Zeldovich, A.A. Ruzmainkin, and D.D. Sokoloff: Magnetic field in Astrophysics, Gordon and Breach, New York, 1993. [31] E.R. Horrison: Phys. Rev. Lett. 30 (1973) 188. [32] H.P. Robertson and A.G. Walker: Proc. London Math. Soc. 42 (1936) 90. [33] C.W. Misner, K.S. Thorne, and J.A. Wheeler: Gravitation, W. H. Freeman, New York, 1973. [34] E. Asseo and H. Sol: Phys. Rep. 6 (1987) 148. [35] M.A. Melvin: Ann. New York Acad. Sci. 262 (1975) 253. [36] R. Pudritz and J. Silk: Astrophys. J. 342 (1989) 650. [37] K.T. Kim, P.G. Tribble, and P.P. Kronberg: Astrophys. J. 379 (1991) 80. [38] R. Perley and G. Taylor: Astrophys. J. 101 (1991) 1623. [39] P.P. Kronberg, J.J. Perry, and E.L. Zukowski: Astrophys. J. 387 (1991) 528. [40] A.M. Wolfe, K. Lanzetta, and A.L. Oren: Astrophys. J.388 (1992) 17. [41] R. Kulsrud, R. Cen, J.P. Ostriker, and D. Ryu: Astrophys. J. 380 (1997) 481. [42] E.G. Zweibel and C. Heiles: Nature 385 (1997) 131. [43] J.D. Barrow: Phys. Rev. D 55 (1997) 7451. [44] Ya.A. Zeldovich: Sov. Astron. 13 (1970) 608. [45] M.S. Turner and L.M. Widrow: Phys. Rev. D 30 (1988) 2743. [46] J. Quashnock, A. Loeb, and D.N. Spergel: Astrophys. J. 344 (1989) L49. [47] B. Ratra: Astrophys. J. 391 (1992) L1. [48] A.D. Dolgov and J. Silk: Phys. Rev. D 47 (1993) 3144. [49] A.D. Dolgov: Phys. Rev. D 48 (1993) 2499. [50] R. Bali: Int. J. Theor. Phys. 47 (1986) 7. R. Bali and M. Ali: Pramana 47 (1996) 25. [51] A. Pradhan and O.P. Pandey: Int. J. Mod. Phys. D 7 (2003) 1299 (gr-qc/0212109). I. Chakrabarty, A. Pradhan, and N.N. Saste: Int. J. Mod. Phys. D 5 (2001) 741. A. Pradhan, S.K. Srivastav, and K.R. Jotania: Czech. J. Phys. 54 (2004) 255. A. Pradhan and S.K. Singh: Int. J. Mod. Phys. D 13 (2004) 503. · Zbl 1079.83578 [52] S.R. Roy and S. Prakash: Ind. J. Phys. 52 B (1978) 47. [53] L. Marder: Proc. Roy. Soc. A 246 (1958) 133. [54] O. Heckmann and E. Schucking: Gravitation: An Introduction to Current Research (Ed. L. Witten), Wiley, New York, 1962, p. 438. [55] K.S. Thorne: Astrophys. J. 148 (1967) 51. [56] A. Lichnerowicz: Relativistic Hydrodynamics and Magnetohydrodynamics, W.A. Benjamine, Inc., New York–Amsterdam, 93. [57] J.L. Synge: Relativity: The General Theory, North-Holland Publ., Amsterdam, 1960, p. 356. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.