zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multi-agent scheduling on a single machine with max-form criteria. (English) Zbl 1129.90023
Summary: We consider multi-agent scheduling on a single machine, where the objective functions of the agents are of the max-form. For the feasibility model, we show that the problem can be solved in polynomial time even when the jobs are subject to precedence restrictions. For the minimality model, we show that the problem is strongly NP-hard in general, but can be solved in pseudo-polynomial-time when the number of agents is a given constant. We then identify some special cases of the minimality model that can be solved in polynomial-time.

90B35Scheduling theory, deterministic
Full Text: DOI
[1] Agnetis, A.; Mirchandani, P. B.; Pacciarelli, D.; Pacifici, A.: Scheduling problems with two competing agents, Operations research 52, 229-242 (2004) · Zbl 1165.90446 · doi:10.1287/opre.1030.0092
[2] Baker, K. R.; Smith, J. C.: A multiple-criterion model for machine scheduling, Journal of scheduling 6, 7-16 (2003) · Zbl 1154.90406 · doi:10.1023/A:1022231419049
[3] Brucker, P.: Scheduling algorithms, (2001) · Zbl 1051.90011
[4] Curiel, I.; Pederzoli, G.; Tijs, S.: Sequencing games, European journal of operational research 40, 344-351 (1989) · Zbl 0674.90107 · doi:10.1016/0377-2217(89)90427-X
[5] Du, J.; Leung, J. Y. -T.: Minimizing total tardiness on one machine is NP-hard, Mathematics of operations research 15, 483-495 (1990) · Zbl 0714.90052 · doi:10.1287/moor.15.3.483
[6] Garey, M. R.; Johnson, D. S.: Computers and intractability: A guide to the theory of NP-completeness, (1979) · Zbl 0411.68039
[7] Hamers, H.; Borm, P.; Tijs, S.: On games corresponding to sequencing situations with ready times, Mathematical programming 70, 1-13 (1995) · Zbl 0844.90120
[8] Kim, K., Paulson, B.C., Petrie, C.J., Lesser, V.R., 1999. Compensatory negotiation for agent-based project schedule coordination. CIFE working paper #55, Stanford University, Stanford, CA.
[9] Kovalyov, M. Y.; Ng, C. T.; Cheng, T. C. E.: Fixed interval scheduling: models, applications, computational complexity and algorithms, European journal of operational research 178, 331-342 (2007) · Zbl 1107.90019 · doi:10.1016/j.ejor.2006.01.049
[10] Lawler, E. L.: Optimal sequencing of a single machine subject to precedence constraints, Management science 19, 544-546 (1973) · Zbl 0254.90039 · doi:10.1287/mnsc.19.5.544
[11] Lawler, E. L.: A pseudopolynomial algorithm for sequencing jobs to minimize total tardiness, Annals of discrete mathematics 1, 331-342 (1977) · Zbl 0353.68071
[12] Scharbrodt, M.; Steger, A.; Weisser, H.: Approximability of scheduling with fixed jobs, Journal of scheduling 2, 267-284 (1999) · Zbl 0953.90025 · doi:10.1002/(SICI)1099-1425(199911/12)2:6<267::AID-JOS31>3.0.CO;2-H
[13] Schultz, D., Oh, S.-H., Grecas, C.F., Albani, M., Sanchez, J., Arbib, C., Arvia, V., Servilio, M., Del Sorbo, F., Giralda, A., Lombardi, G., 2002. A QoS concept for packet oriented S-UMTS services. In: Proceedings of the 1st Mobile Summit, Thessaloniki, Greece.
[14] Yuan, J. J.; Shang, W. P.; Feng, Q.: A note on the scheduling with two families of jobs, Journal of scheduling 8, 537-542 (2005) · Zbl 1123.90040 · doi:10.1007/s10951-005-4997-z