zbMATH — the first resource for mathematics

Observers for a class of Lipschitz systems with extension to \(H_{\infty }\) performance analysis. (English) Zbl 1129.93006
Summary: In this paper, observer design for a class of Lipschitz nonlinear dynamical systems is investigated. One of the main contributions lies in the use of the differential mean value theorem (DMVT) which allows transforming the nonlinear error dynamics into a linear parameter varying (LPV) system. This has the advantage of introducing a general Lipschitz-like condition on the Jacobian matrix for differentiable systems. To ensure asymptotic convergence, in both continuous and discrete time systems, such sufficient conditions expressed in terms of linear matrix inequalities (LMIs) are established. An extension to \(H_{\infty }\) filtering design is obtained also for systems with nonlinear outputs. A comparison with respect to the observer method of J. P. Gauthier, H. Hammouri and S. Othman [IEEE Trans. Autom. Control 37, No. 6, 875–880 (1992; Zbl 0775.93020)] is presented to show that the proposed approach avoids high gain for a class of triangular globally Lipschitz systems. In the last section, academic examples are given to show the performances and some limits of the proposed approach. The last example is introduced with the goal to illustrate good performances on robustness to measurement errors by avoiding high gain.

93B07 Observability
93C10 Nonlinear systems in control theory
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
LMI toolbox
Full Text: DOI
[1] A. Alessandri, Design of observers for Lipschitz nonlinear systems using LMI, in: NOLCOS, IFAC Symposium on Nonlinear Control Systems, Stuttgart, Germany, 2004.
[2] Arcak, M.; Kokotovic, P., Nonlinear observers: a circle criterion design and robustness analysis, Automatica, 37, 12, 1923-1930, (2001) · Zbl 0996.93010
[3] Bestle, D.; Zeitz, M., Canonical form observer design for nonlinear time-variable systems, Internat. J. control, 38, 2, 419-431, (1983) · Zbl 0521.93012
[4] Boutayeb, M., Synchronization and input recovery in digital non-linear systems, IEEE trans. circuits and systems II: express brief, 51, 8, 393-399, (2004)
[5] Boutayeb, M.; Aubry, D., A strong tracking extended Kalman observer for nonlinear discrete-time systems, IEEE trans. automat. control, 44, 8, 1550-1556, (1999) · Zbl 0957.93086
[6] Boutayeb, M.; Darouach, M.; Rafaralahy, H., Generalized state-space observers for chaotic synchronization and secure communication, IEEE trans. circuits and systems I, 49, 3, 345-349, (2002) · Zbl 1368.94087
[7] S. Boyd, L. Vandenberghe, Convex optimization with engineering applications, in: Lecture Notes, Stanford University, Stanford, 2001.
[8] De Angeli, A.; Genesio, R.; Tesi, A., Dead-beat chaos synchronization in discrete-time systems, IEEE trans. circuits and systems I, 42, 1, 54-56, (1995)
[9] Fan, X.; Arcak, M., Observer design for systems with multivariable monotone nonlinearities, Systems control lett., 50, 319-330, (2003) · Zbl 1157.93330
[10] P. Gahinet, A. Nemirovski, A.J. Laub, M. Chilali, LMI control toolbox, The Math Works Inc.
[11] Gauthier, J.P.; Hammouri, H.; Othman, S., A simple observer for nonlinear systems. applications to bioreactors, IEEE trans. automat. control, 37, 6, 875-880, (1992) · Zbl 0775.93020
[12] Gauthier, J.P.; Kupka, I.A.K., Observability and observers for nonlinear systems, SIAM J. control optim., 32, 4, 975-994, (1994) · Zbl 0802.93008
[13] Grassi, G.; Miller, D., Theory and experimental realization of observer-based discrete-time hyperchaos synchronization, IEEE trans. circuits and systems I, 49, 3, 373-378, (2002)
[14] Hou, M.; Pugh, A., Observer with linear error dynamics for nonlinear multi output systems, Systems control lett., 37, 1, 1-9, (1999) · Zbl 0917.93010
[15] Keller, H., Nonlinear observer design by transformation into a generalized observer canonical form, Internat. J. control, 46, 6, 1915-1930, (1987) · Zbl 0634.93012
[16] Krener, A.J.; Isidori, A., Linearization by output injection and nonlinear observers, Systems control lett., 3, 1, 47-52, (1983) · Zbl 0524.93030
[17] Krener, A.J.; Respondek, W., Nonlinear observer with linearizable error dynamics, SIAM J. control optim., 23, 2, 197-216, (1985) · Zbl 0569.93035
[18] Li, H.; Fu, M., A linear matrix inequality approach to robust \(H_\infty\) filtering, IEEE trans. signal process., 45, 9, 2338-2350, (1997)
[19] Liao, T.; Huang, N., An observer-based approach for chaotic synchronization with applications to secure communications, IEEE trans. circuits and systems I, 46, 9, 1144-1150, (1999) · Zbl 0963.94003
[20] Morgul, O.; Solak, E., Observer based synchronization of chaotic systems, Phys. rev. E, 54, 4802-4811, (1996)
[21] Nijmeijer, H.; Mareels, I.M.Y., An observer looks at synchronization, IEEE trans. circuits and systems I, 44, 10, 882-890, (1997)
[22] P.R. Pagilla, Y. Zhu, Controller and observer design for Lipschitz nonlinear systems, in: American Control Conference ACC’04, Boston, Massachusetts, USA, 2004.
[23] Pecora, L.; Carroll, T., Synchronization in chaotic systems, Phys. rev. lett., 64, 8, 821-824, (1990) · Zbl 0938.37019
[24] Pertew, A.M.; Marquez, H.J.; Zhao, Q., \(H_\infty\) synthesis of unknown input observers for nonlinear Lipschitz systems, Internat. J. control, 78, 15, 1155-1165, (2005) · Zbl 1077.93018
[25] Rajamani, A., Observers for Lipschitz nonlinear systems, IEEE trans. automat. control, 43, 3, 397-401, (1998) · Zbl 0905.93009
[26] Reif, K.; Sonnemann, F.; Unbehauen, R., Nonlinear state observation using \(H_\infty\)-filtering Riccati design, IEEE trans. automat. control, 44, 1, 203-208, (1999) · Zbl 1056.93633
[27] Suykens, J.A.K.; Curran, P.F.; Vandewalle, J.; Chua, L.O., Robust nonlinear \(H_\infty\) synchronization of chaotic lur’e systems, IEEE trans. circuits and systems I, 44, 10, 891-904, (1997) · Zbl 0967.93508
[28] Tayebi, A.; Xu, J.X., Observer-based iterative learning control for a class of time-varying nonlinear systems, IEEE trans. circuits and systems I, 50, 3, 452-455, (2003) · Zbl 1368.93801
[29] Zemouche, A.; Boutayeb, M., Observer design for Lipschitz nonlinear systems. the discrete-time case, IEEE trans. circuits and systems II, 53, 8, 777-781, (2006)
[30] Zhu, F.; Han, Z., A note on observers for Lipschitz nonlinear systems, IEEE trans. automat. control, 47, 10, 1751-1754, (2002) · Zbl 1364.93104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.