zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Feedback control and adaptive control of the energy resource chaotic system. (English) Zbl 1129.93403
Summary: The problem of control for the energy resource chaotic system is considered. Two different method of control, feedback control (include linear feedback control, non-autonomous feedback control) and adaptive control methods are used to suppress chaos to unstable equilibrium or unstable periodic orbits. The Routh-Hurwitz criteria and Lyapunov direct method are used to study the conditions of the asymptotic stability of the steady states of the controlled system. The designed adaptive controller is robust with respect to a certain class of disturbances in the energy resource chaotic system. Numerical simulations are presented to show these results.

MSC:
93B52Feedback control
37D45Strange attractors, chaotic dynamics
37N25Dynamical systems in biology
92B20General theory of neural networks (mathematical biology)
93C40Adaptive control systems
93D05Lyapunov and other classical stabilities of control systems
93D20Asymptotic stability of control systems
WorldCat.org
Full Text: DOI
References:
[1] Huber, A. W.: Adaptive control of chaotic system. Helv acta 62, 343-346 (1989)
[2] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos. Phys rev lett 64, 1196-1199 (1990) · Zbl 0964.37501
[3] Bai, E. W.; Lonngren, K. E.: Sequential synchronization of two Lorenz systems using active control. Chaos, solitons & fractals 11, 1041-1044 (2000) · Zbl 0985.37106
[4] Yang, X. S.; Chen, G.: Some observer-based criteria for discrete-time generalized chaos synchronization. Chaos, solitons & fractals 13, 1303-1308 (2002) · Zbl 1006.93580
[5] Chen, G.; Dong, X.: On feedback control of chaotic continuous time systems. IEEE trans circ syst 40, 591 (1993) · Zbl 0800.93758
[6] Yassen, M. T.: Chaos control of Chen chaotic dynamical system. Chaos, solitons & fractals 15, 271 (2003) · Zbl 1038.37029
[7] Yassen, M. T.: Controlling chaos and synchronization for new chaotic system using linear feedback. Chaos, solitons & fractals 26, 913 (2005) · Zbl 1093.93539
[8] Agiza, H. N.: Controlling chaos for the dynamical system of coupled dynamos. Chaos, solitons & fractals 12, 341 (2002) · Zbl 0994.37047
[9] Sanchez, E. N.; Perez, J. P.; Martinez, M.; Chen, G.: Chaos stabilization: an inverse optimal control approach. Latin am appl res: int J 32, 111 (2002)
[10] Yassen, M. T.: Adaptive control and synchronization of a modified Chua’s circuit system. Appl math comput 135, 113 (2001) · Zbl 1038.34041
[11] Liao, T. -L.; Lin, S. -H.: Adaptive control and synchronization of Lorenz systems. J franklin inst 336, 925 (1999) · Zbl 1051.93514
[12] Mei Sun, Lixin Tian. An energy resources demand-supply system and its dynamical analysis. Chaos, Solitons & Fractals, in press, doi:10.1016/j.chaos.2005.10.085. · Zbl 1133.91524