zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Several polynomials associated with the harmonic numbers. (English) Zbl 1130.11011
For nonnegative integers $r$ and $n$ let $H_n^{(r)}=\sum_{1\le n_0+\cdots+n_r\le n}{{1}\over {n_0n_1\cdots n_r}}$ be the $n$th generalized harmonic number of rank $r$. In this paper, the authors develop polynomials $H_n^{(r)}(z)$ of degree $n-r$ in the complex variable $z$ generalizing the above harmonic numbers. These polynomials are given by $$ {{[-\ln(1-t)]^{1+r}}\over {t(1-t)^{1-z}}}=\sum_{n=0}^{\infty} H_n^{(r)}(z) t^n. $$ The harmonic polynomials can be expressed in terms of the generalized harmonic numbers as $$ H_n^{(r)}(z)=\sum_{k=0}^{n-r} (-1)^k H_{n}^{(r+k)}{{z^k}\over {k!}}, $$ which is analogous to the formula relating Bernoulli polynomials and Bernoulli numbers. In the paper, the authors prove various relations between the generalized harmonic polynomials and other interesting sequences of polynomials such as generalized Stirling polynomials, Bernoulli polynomials, multiple Gamma functions, Cauchy polynomials and Nörlund polynomials. For example, Theorem 5.1 shows that $$ {{[x-z+1]_n}\over {n!}}=\sum_{k=0}^n {{1}\over {(k+1)!}} H_n^{(k)}(z-x+1), $$ where, as usual, $[x]_n=x(x+1)\cdots (x+n-1)$. The proofs make strong use of the summation property of Riordan arrays [see {\it L. W. Shapiro, S. Getu, W.-J. Woan} and {\it L. C. Woodson}, Discrete Appl. Math. 34, No. 1--3, 229--239 (1991; Zbl 0754.05010)].

MSC:
11B68Bernoulli and Euler numbers and polynomials
11B73Bell and Stirling numbers
05A10Combinatorial functions
05A15Exact enumeration problems, generating functions
WorldCat.org
Full Text: DOI
References:
[1] Adamchik, V. S.: The multiple gamma function and its application to computation of series. Ramanujan J. 9, 271-288 (2005) · Zbl 1088.33014
[2] G.-S. Cheon, M. El-Mikkawy, Generalized harmonic numbers with Riordan arrays, J. Number Theory, submitted for publication.
[3] Choi, J.; Srivastava, H. M.; Adamchik, V. S.: Multiple gamma and related functions. Appl. math. Comput. 134, 515-533 (2003) · Zbl 1026.33003
[4] Chu, W.: Harmonic number identities and Hermite -- Padé approximations to the logarithm function. J. approx. Theory 137, 42-56 (2005) · Zbl 1082.41014
[5] Comtet, L.: Advanced combinatorics. (1974) · Zbl 0283.05001
[6] Gertsch, A.: Generalized harmonic numbers, number theory. C. R. Acad. sci. Paris ser. I 324, 7-10 (1997) · Zbl 0877.11010
[7] Gessel, I. M.: On miki’s identity for Bernoulli numbers. J. number theory 110, 75-82 (2005) · Zbl 1073.11013
[8] Liu, G. -D.; Srivastava, H. M.: Explicit formulas for the nörlund polynomials $Bn(x)$ and $bn(x)$. Comput. math. Appl. 51, 1377-1384 (2006) · Zbl 1161.11314
[9] Merlini, D.; Sprugnoli, R.; Verri, M. C.: The Cauchy numbers. Discrete math. 306, 1906-1920 (2006) · Zbl 1098.05008
[10] Rassias, T. M.; Srivastava, H. M.: Some classes of infinite series associated with the Riemann zeta and polygamma functions and generalized harmonic numbers. Appl. math. Comput. 131, 593-605 (2002) · Zbl 1070.11038
[11] Rosen, K. H.: Handbook of discrete and combinatorial mathematics. (2000) · Zbl 1044.00002
[12] Santmyer, J. M.: A Stirling like sequence of rational numbers. Discrete math. 171, 229-235 (1997) · Zbl 0873.05006
[13] Shapiro, L. W.; Getu, S.; Woan, W. -J.; Woodson, L.: The Riordan group. Discrete appl. Math. 34, 229-239 (1991) · Zbl 0754.05010
[14] Sprugnoli, R.: Riordan arrays and combinatorial sums. Discrete math. 132, 267-290 (1994) · Zbl 0814.05003
[15] Zhang, Z.; Wang, J.: Bernoulli matrix and its algebraic properties. Discrete appl. Math. 154, 1622-1632 (2006) · Zbl 1129.11009