Bertrand, D.; Zudilin, W. On the transcendence degree of the differential field generated by Siegel modular forms. (English) Zbl 1130.11020 J. Reine Angew. Math. 554, 47-68 (2003). Let \(q\) be a positive integer and \(k\) be an algebraically closed subfield of \(\mathbb{C}\), \( \mathfrak{H}_g\) Siegel half space of degree \(g\), \(\tau = (\tau_{jl})\) a generic point on \( \mathfrak{H}_g\), and \(\Gamma\) a congruence subgroup of the symplectic group \(\mathrm{Sp}_{2g}K\). The field of modular functions \(K=K(\Gamma, k)\) has the form \(K=k(\lambda)\), where \(\lambda=\{\lambda_1, \ldots, \lambda_N\}\) is a set of modular function relative to \(\Gamma\), whose first \(n=\mathrm{tr deg}(K/k)\) elements are algebraically independent. Set \({\delta} =\{\delta_{jl}, 1\leq j \leq l \leq q \}\) where \(\delta_{ij} =\frac{1}{2\pi i}\frac{\partial}{\partial \tau_{jl}}, 1\leq j< l <g, \delta_{jj} =\frac{1}{\pi i} \frac{\partial}{\partial\tau_{jj}}, 1\leq j \leq g\). Let \(M=M(\Gamma, k)=k\langle \lambda_1, \ldots, \lambda_N \rangle\) be the \({\delta}\)-differential field generated by \(K\). The main result of the paper (Theorem 1) asserts that \(M\) is a finite extension of the field generated over \(K\) by the \({\delta}\)-partial derivatives \(\lambda_1, \ldots, \lambda_N\) of order \(\leq 2\) and has the transcendence degree \(2g^2 +g\), \(M\) and \(\mathbb{C}({\tau})\) are linearly disjoint over \(k\), and \(\mathrm{tr deg} (M(2 \pi i \tau)/h)=\frac{g(5g+3)}{2}\). Taking for \(\Gamma\) the theta group \(\Gamma_{4,8}\) of level 4,8, and \(\lambda=\{ \vartheta_a / \vartheta_0 , a\in (\mathbb{Z}/2\mathbb{Z})^{2g}\}\) this result can be stated in the following more precise theorem: Theorem 2. The \(\delta\)-derivative of order \(\leq 2\) of the modular functions \(\{ \vartheta_a / \vartheta_0 , a\in (\mathbb{Z}/2\mathbb{Z})^{2g}\}\) generate over \(k\) a \(\delta\)-stable field \(M(\Gamma_{4,8}, k)\) of transcendence degree \(2g^2+g\) over \(k\), over which \(\vartheta_0\) is algebraic. Finally, this last result is sharpened in the cases \(g=1,2\). This is done in the final section of the paper. The proofs use the Picard-Fuchs and Picard-Vessiot theories, differential forms and the explicit formulae on derivatives of theta functions. Reviewer: Mykola Ya. Komarnytskyy (Lviv) Cited in 2 ReviewsCited in 8 Documents MSC: 11F46 Siegel modular groups; Siegel and Hilbert-Siegel modular and automorphic forms 12H05 Differential algebra Keywords:Siegel modular forms; theta functions; field of modular functions; \(\delta\)-derivatives; Picard-Fuchs extension; Picard-Vessiot extensions PDF BibTeX XML Cite \textit{D. Bertrand} and \textit{W. Zudilin}, J. Reine Angew. Math. 554, 47--68 (2003; Zbl 1130.11020) Full Text: DOI arXiv OpenURL References: [1] Compos. Math. 82 pp 1– (1992) [2] Andre Y., Math. 476 pp 95– (1996) [3] [B] D. Bertrand, Endomorphismes de groupes algebriques; applications arithmetiques, Approximations diophantiennes et nombres transcendants (Colloque de Luminy, 1982), D. Bertrand, M. Waldschmidt, eds., Progr. Math. 31, Birkh user, Boston-Basel-Stuttgart (1983), 1-45. [4] Deligne P., . Sci. Publ. Math. 40 pp 5– (1972) [5] [D2] P. Deligne, Hodge cycles on abelian varieties, Notes by J. S. Milne, Hodge Cycles, Motives, and Shimura Varieties, Lect. Notes Math. 900, Springer, Berlin (1982), 9-100. [6] [I] J. Igusa, Theta Functions, Grundl. Math. Wiss.194, Springer, Berlin-Heidelberg-New York 1972. · Zbl 0251.14016 [7] [Ka] K. N. Katz, p-adic properties of modular schemes and modular forms, Modular Functions of one Variable III, Proc. Internat. Summer School (Univ. Antwerp, 1972), Lect. Notes Math. 350, Springer, Berlin (1973), 69-190. [8] [Kr] A. Krazer, Lehrbuch der Thetafunktionen, Leipzig1903; Reprint, Chelsea Publ., New York 1970. [9] Lang S., Encyclop. Math. Sci. 60 pp 1991– [10] J. Austral. Math. Soc. 10 pp 445– (1969) [11] [MF] D. Mumford, J. Fogarty, Geometric Invariant Theory, 2nd edition, Ergeb. Math. Grenzgeb.34, Springer, Berlin-New York 1982. · Zbl 0504.14008 [12] [O] Y. Ohyama, Di erential equations of theta constants of genus two, Algebraic Analysis of Singular Perturbations (Kyoto 1996), Su rikaisekikenkyu sho Ko kyu roku 968, Kyoto Univ., Kyoto (1996), 96-103. [13] Parsin A. N., Trudy Mat. Inst. Steklov. 132 pp 211– (1973) [14] R., J. Indian Math. Soc. 20 pp 103– (1956) [15] H., Abh. Math. Semin. Univ. Hamburg 38 pp 168– (1972) [16] [S] G. Shimura, Abelian Varieties with Complex Multiplication and Modular Functions, Princeton Math. Ser.46, Princeton Univ. Press, Princeton, NJ, 1998. · Zbl 0908.11023 [17] Mat. Sbornik 192 pp 8– (2000) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.