zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the Cauchy type problem for systems of functional differential equations. (English) Zbl 1130.34035
The author establishes new efficient conditions for the solvability and the unique solvability of the Cauchy problem for systems of functional differential equations in both linear and nonlinear cases. Proofs of the main results are based on the technique of a priori estimates, theorems on functional differential inequalities, and the Fredholm alternative in the linear case.

MSC:
34K05General theory of functional-differential equations
34K06Linear functional-differential equations
WorldCat.org
Full Text: DOI
References:
[1] Azbelev, N. V.; Maksimov, V. P.; Rakhmatullina, L. F.: Introduction to the theory of functional differential equations. (1991) · Zbl 0725.34071
[2] Bernfeld, S. R.; Lakshmikantham, V.: An introduction to nonlinear boundary value problems. (1974) · Zbl 0286.34018
[3] Bravyi, E.; Hakl, R.; Lomtatidze, A.: On Cauchy problem for first order nonlinear functional differential equations of non-Volterra’s type. Czechoslovak math. J. 52, No. 4, 673-690 (2002) · Zbl 1023.34054
[4] Hakl, R.; Bravyi, E.; Lomtatidze, A.: Optimal conditions for unique solvability of the Cauchy problem for the first order linear functional differential equations. Czechoslovak math. J. 52, No. 3, 513-530 (2002) · Zbl 1023.34055
[5] Coddington, E. A.; Levinson, N.: Theory of ordinary differential equations. (1955) · Zbl 0064.33002
[6] Dilnaya, N.; Rontó, A.: Multistage iterations and solvability of linear Cauchy problems. Miskolc math. Notes 4, No. 2, 89-102 (2003) · Zbl 1051.34049
[7] Hakl, R.; Lomtatidze, A.; Puža, B.: On a boundary value problem for first order scalar functional differential equations. Nonlinear anal. 53, No. 3--4, 391-405 (2003) · Zbl 1024.34056
[8] Hakl, R.; Lomtatidze, A.; Puža, B.: On nonnegative solutions of first order scalar functional differential equations. Mem. differential equations math. Phys. 23, 51-84 (2001) · Zbl 1009.34058
[9] Hakl, R.; Lomtatidze, A.; Šremr, J.: Some boundary value problems for first order scalar functional differential equations. Folia facult. Scien. natur. Univ. masar. Brunensis (2002) · Zbl 1022.34058
[10] Hakl, R.; Mukhigulashvili, S.: On a boundary value problem for n-th order linear functional differential systems. Georgian math. J. 12, No. 2, 229-236 (2005) · Zbl 1092.34550
[11] Hale, J.: Theory of functional differential equations. (1977) · Zbl 0352.34001
[12] Hartman, P.: Ordinary differential equations. (1964) · Zbl 0125.32102
[13] Kantorovich, L. V.; Vulikh, B. Z.; Pinsker, A. G.: Functional analysis in semi-ordered spaces. (1950) · Zbl 0037.07201
[14] Kiguradze, I.: Boundary value problems for systems of ordinary differential equations. Current problems in mathematics. Newest results 30, 3-103 (1987)
[15] Kiguradze, I.: Initial and boundary value problems for systems of ordinary differential equations. Linear theory (1997) · Zbl 0956.34505
[16] Kiguradze, I.; Puža, B.: Boundary value problems for systems of linear functional differential equations. Folia facult. Scien. natur. Univ. masar. Brunensis (2003)
[17] Kiguradze, I.; Puža, B.: On boundary value problems for functional differential equations. Mem. differential equations math. Phys. 12, 106-113 (1997) · Zbl 0909.34054
[18] Kiguradze, I. T.; Puža, B.: Teoremy tipa konti--opiala dlja nelinejnych funkcional’nych defferentsial’nych uravnenij. Differ. uravn. 33, No. 2, 185-194 (1997)
[19] Kiguradze, I.; Sokhadze, Z.: Concerning the uniqueness of solution of the Cauchy problem for functional differential equations. Differ. equ. 31, No. 12, 1947-1958 (1995) · Zbl 0874.34055
[20] Kiguradze, I.; Sokhadze, Z.: On the global solvability of the Cauchy problem for singular functional differential equations. Georgian math. J. 4, No. 4, 355-373 (1997) · Zbl 0882.34066
[21] Kiguradze, I.; Sokhadze, Z.: On the structure of the set of solutions of the weighted Cauchy problem for evolution singular functional differential equations. Fasc. math. 28, 71-92 (1998) · Zbl 0906.34049
[22] Kolmanovskii, V.; Myshkis, A.: Introduction to the theory and applications of functional differential equations. (1999) · Zbl 0917.34001
[23] Ronto, A. N.: Exact solvability conditions of the Cauchy problem for systems of linear first-order functional differential equations determined by ({$\sigma$}1,{$\sigma$}2,$\dots ,{\sigma}$n;{$\tau$})-positive operators. Ukrainian math. J. 55, No. 11, 1853-1884 (2003)
[24] Schwabik, Š.; Tvrdý, M.; Vejvoda, O.: Differential and integral equations: boundary value problems and adjoints. (1979) · Zbl 0417.45001
[25] Šremr, J.: On systems of linear functional differential inequalities. Georgian math. J. 13, No. 3, 539-572 (2006) · Zbl 1204.34105
[26] Walter, W.: Differential and integral inequalities. (1970) · Zbl 0252.35005