zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic properties of a HIV-1 infection model with time delay. (English) Zbl 1130.34052
Summary: A class of more general HIV-1 infection models with time delay is proposed where the delay represents the time from being infected to being infections. The effect of this time delay on stability of the equilibria is examined and sufficient criteria for local asymptotic stability of the infected equilibrium and global asymptotic stability of the viral free equilibrium are given.

34K20Stability theory of functional-differential equations
Full Text: DOI
[1] Anderson, R. M.: Mathematical and statistical studies of the epidemiology of HIV. Aids 3, 333-346 (1989)
[2] Chen, L.; Song, X.; Lu, Z.: Mathematical models and methods in ecology. (2002)
[3] Culshaw, R. V.; Ruan, S.: A delay-differential equation model of HIV infection of D4+ T-cells. Math. biosci. 165, 27-39 (2000) · Zbl 0981.92009
[4] Culshaw, R. V.; Ruan, S.; Webb, G.: A mathematical model of cell-to-cell HIV-1 that include a time delay. J. math. Biol. 46, 425-444 (2003) · Zbl 1023.92011
[5] Hale, J. K.: Theory of functional differential equations. (1997) · Zbl 1098.34552
[6] Herz, A. V. M.; Bonhoeffer, S.; Anderson, R. M.; May, R. M.; Nowak, M. A.: Viral dynamics in vivo: limitations on estimates of intracellular delay and virus decay. Proc. natl. Acad. sci. USA 93, 7247-7251 (1996)
[7] Kajiwara, T.; Sasaki, T.: Theoretical analysis of pathogen-immune interaction dynamical system models. Suri kaiseki kenkyujyo kokyuroku 1432, 172-177 (2005)
[8] Kajiwara, T.; Sasaki, T.: A note on the stability analysis of pathogen-immune interaction dynamics. Discrete contin. Dyn. syst. Ser. B 4, 615-622 (2004) · Zbl 1101.92027
[9] Kuang, Y.: Delay differential equations with applications in population dynamics. (1993) · Zbl 0777.34002
[10] Liu, W.: Nonlinear oscillation in models of immune responses to persistent viruses. Theoret. popul. Biol. 52, 224-230 (1997) · Zbl 0890.92015
[11] Ma, Z.; Zhou, Y.; Wang, W.; Jin, Z.: Mathematical models in epidemiology dynamics. (2004)
[12] Mittler, J. E.; Markowitz, B.; Ho, D. D.; Perelson, A. S.: Improved estimates for HIV-1 clearance rate and intracellular delay. Aids 13, 1415-1417 (1999)
[13] Nelson, P. W.; Perelson, A. S.: Mathematical analysis of a delay differential equation models of HIV-1 infection. Math. biosci. 179, 73-94 (2002) · Zbl 0992.92035
[14] Nowak, M. A.; Bangham, C. R. M.: Population dynamics of immune responses to persistent viruses. Science 272, 74-79 (1996)
[15] Nowak, M. A.; Bonhoeffer, S.; Shaw, G. M.; May, R. M.: Anti-viral drug treatment: dynamics of resistance in free virus and infected cell populations. J. theoret. Biol. 184, 203-217 (1997)
[16] Song, M.; Ma, W.: Asymptotic properties of a revised SIR epidemic model with density dependent birth rate and time delay. Dyn. contin. Discrete impuls. Syst. 13, 199-208 (2006) · Zbl 1102.34061