zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Solving large classes of nonlinear systems of PDEs. (English) Zbl 1130.35026
Summary: It is shown that large classes of nonlinear systems of PDEs, with possibly associated initial and/or boundary value problems, can be solved by the method of order completion. The solutions obtained can be assimilated with Hausdorff-continuous functions. The usual Navier-Stokes equations, as well as their various modifications aiming at a realistic modeling, are included as particular cases. The same holds for the critically important constitutive relations in various branches of Continuum Mechanics. The solution method does not involve functional analysis, nor various Sobolev or other spaces of distributions or generalized functions. The general and type independent existence and regularity results regarding solutions presented here have recently been introduced in the literature.

35G20General theory of nonlinear higher-order PDE
35A25Other special methods (PDE)
Full Text: DOI
[1] Oberguggenberger, M. B.; Rosinger, E. E.: Solution of continuous nonlinear pdes through order completion. North-holland mathematics studies 181 (1994) · Zbl 0821.35001
[2] Anguelov, R.: Dedekind order completion of $C(X)$ by Hausdorff continuous functions. Quaestiones mathematicae 27, 153-170 (2004) · Zbl 1062.54017
[3] Macneille, H. M.: Partially ordered sets. Transactions of the American mathematical society 42, 416-460 (1937) · Zbl 0017.33904
[4] Forster, O.: Analysis 3. Integralrechnung in rn mit anwendungen (1981) · Zbl 0479.26010
[5] Lewy, H.: An example of smooth linear partial differential equation without solutions. Annals of mathematics 66, No. 2, 155-158 (1957) · Zbl 0078.08104
[6] Rajagopal, K. R.; Wineman, A. S.: On constitutive equations for branching of response with selectivity. International journal of nonlinear mechanics 15, 83-91 (1980) · Zbl 0442.73002
[7] Rajagopal, K. R.: On implicit constitutive theories. Application of mathematics 28, No. 4, 279-319 (2003) · Zbl 1099.74009
[8] Rajagopal, K. R.; Srinivasa, A. R.: On thermo--mechanical restrictions of continua. Proceedings of the royal society of London series A. Mathematical, physical and engineering sciences 460, 631-651 (2004) · Zbl 1041.74002
[9] Arnold, V. I.: Lectures on pdes. (2004)
[10] Evans, L. C.: Partial differential equations. AMS graduate studies in mathematics 19 (1998) · Zbl 0902.35002
[11] Baire, R.: Lecons sur LES fonctions discontinues. (1905) · Zbl 36.0438.01
[12] Sendov, B.: Hausdorff approximations. (1990) · Zbl 0715.41001
[13] Kraemer, W.; Von Gudenberg, J. W.: Scientific computing, validated numerics, interval methods. (2001)
[14] Anguelov, R.: An introduction to some spaces of interval functions · Zbl 1163.54012
[15] Anguelov, R.; Markov, S.: Extended segment analysis. Freiburger intervall - berichte 10, 1-63 (1981)
[16] Anguelov, R.; Markov, S.; Sendov, B.: On the normed linear space of Hausdorff continuous functions. Lecture notes in computer science 3743, 281-288 (2006) · Zbl 1142.46316
[17] Anguelov, R.; Markov, S.; Sendov, B.: The set of Hausdorff continuous functions -- the largest linear space of interval functions. Reliable computing 12, 337-363 (2006) · Zbl 1110.65036
[18] R. Anguelov, F. Minani, Interval viscosity solutions of Hamilton--Jacobi equations. Technical Report UPWT 2005/3, University of Pretoria · Zbl 1280.70011
[19] R. Anguelov, E.E. Rosinger, Dedekind order completion of M({$\Omega$}) by Hausdorff continuous functions (in press) · Zbl 02230563
[20] Anguelov, R.; Rosinger, E. E.: Hausdorff continuous solutions of nonlinear pdes through the order completion method. Quaestiones mathematicae 28, No. 3, 271-285 (2005) · Zbl 02230563
[21] R. Anguelov, E.E. Rosinger, Solution of nonlinear PDEs by Hausdorff continuous functions (in press) · Zbl 02230563
[22] Nicolescu, M.: Analiză matematică II. (1958) · Zbl 0089.03101
[23] Oxtoby, J. C.: Measure and category. (1971) · Zbl 0217.09201
[24] Luxemburg, W. A. J.; Zaanen, A. C.: Riesz spaces I. (1971) · Zbl 0231.46014
[25] Zaanen, A. C.: The universal completion of an Archimedean Riesz space. Indagationes mathematicae 45, No. 4, 435-441 (1983) · Zbl 0528.47005
[26] Dilworth, R. P.: The normal completion of the lattice of continuous functions. Transactions of the American mathematical society 68, 427-438 (1950) · Zbl 0037.20205
[27] Mack, J. E.; Johnson, D. G.: The Dedekind completion of $C(X)$. Pacific journal of mathematics 20, No. 2, 231-243 (1967) · Zbl 0152.39802
[28] Markov, S.: Calculus for interval functions of a real variable. Computing 22, 325-337 (1979) · Zbl 0408.65026
[29] Markov, S.: Extended interval arithmetic involving infinite intervals. Mathematica balkanica 6, 269-304 (1992) · Zbl 0830.65034