Carozza, Menita; Passarelli di Napoli, Antonia Partial regularity for anisotropic functionals of higher order. (English) Zbl 1130.35317 ESAIM, Control Optim. Calc. Var. 13, No. 4, 692-706 (2007). Summary: We prove a \(C^{k,\alpha}\) partial regularity result for local minimizers of variational integrals of the type \(I(u)=\int_\Omega f(D^{k}u(x))\,dx\), assuming that the integrand \(f\) satisfies (\(p,q)\) growth conditions. Cited in 7 Documents MSC: 35D10 Regularity of generalized solutions of PDE (MSC2000) 49N60 Regularity of solutions in optimal control Keywords:nonstandard growth; higher order derivatives PDF BibTeX XML Cite \textit{M. Carozza} and \textit{A. Passarelli di Napoli}, ESAIM, Control Optim. Calc. Var. 13, No. 4, 692--706 (2007; Zbl 1130.35317) Full Text: DOI Numdam EuDML References: [1] E. Acerbi and N. Fusco , Partial regularity under anisotropic \((p,q)\) growth conditions . J. Diff. Eq. 107 ( 1994 ) 46 - 67 . Zbl 0807.49010 · Zbl 0807.49010 [2] M. Bildhauer , Convex variational problems . Linear, nearly linear and anisotropic growth conditions. Lect. Notes Math. 1818, Springer-Verlag, Berlin ( 2003 ). MR 1998189 | Zbl 1033.49001 · Zbl 1033.49001 [3] M. Bildhauer and M. Fuchs , Higher order variational problems with non-standard growth condition in dimension two: plates with obstacles . Ann. Acad. Sci. Fennicae Math. 26 ( 2001 ) 509 - 518 . Zbl 1014.49031 · Zbl 1014.49031 [4] M. Carriero , A. Leaci and F. Tomarelli , Strong minimizers of Blake & Zisserman functional . Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15 ( 1997 ) 257 - 285 . Numdam | Zbl 1015.49010 · Zbl 1015.49010 [5] R. Choksi , R.V. Kohn and F. Otto , Domain branching in uniaxial ferromagnets: a scaling law for the minimum energy . Comm. Math. Phys. 201 ( 1999 ) 61 - 79 . Zbl 1023.82011 · Zbl 1023.82011 [6] B. Dacorogna , Direct methods in the calculus of variations . Appl. Math. Sci. 78, Springer Verlag ( 1989 ). MR 990890 | Zbl 0703.49001 · Zbl 0703.49001 [7] G. Dal Maso , I. Fonseca , G. Leoni and M. Morini , Higher order quasiconvexity reduces to quasiconvexity Arch . Rational Mech. Anal. 171 ( 2004 ) 55 - 81 . Zbl 1082.49017 · Zbl 1082.49017 [8] L. Esposito , F. Leonetti and G. Mingione , Regularity results for minimizers of irregular integrals with \((p,q)\) growth . Forum Math. 14 ( 2002 ) 245 - 272 . Zbl 0999.49022 · Zbl 0999.49022 [9] L. Esposito , F. Leonetti and G. Mingione , Sharp regularity for functionals with \((p,q)\) growth . J. Diff. Eq. 204 ( 2004 ) 5 - 55 . Zbl 1072.49024 · Zbl 1072.49024 [10] I. Fonseca and J. Malý , Relaxation of multiple integrals in Sobolev spaces below the growth exponent for the energy density . Ann. Inst. H. Poincaré - Anal. Non Linéaire 14 ( 1997 ) 309 - 338 . Numdam | Zbl 0868.49011 · Zbl 0868.49011 [11] I. Fonseca and J. Malý , From Jacobian to Hessian: distributional form and relaxation . Riv. Mat. Univ. Parma (7) ( 2005 ), Proc. Conf. “Trends in the Calculus of Variations”, E. Acerbi and G. Mingione Eds., 45 - 74 . Zbl 1101.49011 · Zbl 1101.49011 [12] M. Giaquinta , Multiple integrals in the calculus of variations and nonlinear elliptic systems . Ann. Math. Stud. 105 ( 1983 ), Princeton Univ. Press. MR 717034 | Zbl 0516.49003 · Zbl 0516.49003 [13] M. Giaquinta , Growth conditions and regularity, a counterexample . Manu. Math. 59 ( 1987 ) 245 - 248 . Article | Zbl 0638.49005 · Zbl 0638.49005 [14] E. Giusti , Metodi diretti in calcolo delle variazioni . U.M.I. ( 1994 ). · Zbl 0942.49002 [15] M. Guidorzi , A remark on partial regularity of minimizers of quasiconvex integrals of higher order . Rend. Ist. Mat di Trieste XXXII ( 2000 ) 1 - 24 . Zbl 1006.49028 · Zbl 1006.49028 [16] M. Kronz , Partial regularity results for minimizers of quasiconvex functionals of higher order . Ann. Inst. H. Poincaré - Anal. Non Linéaire 19 ( 2002 ) 81 - 112 . Numdam | Zbl 1010.49023 · Zbl 1010.49023 [17] P. Marcellini , Un example de solution discontinue d’un probéme variationel dans le cas scalaire . Preprint Ist. U. Dini, Firenze ( 1987 - 1988 ). [18] P. Marcellini , Regularity of minimizers of integrals of the calculus of Variations with non-standard growth conditions . Arch. Rat. Mech. Anal. 105 ( 1989 ) 267 - 284 . Zbl 0667.49032 · Zbl 0667.49032 [19] P. Marcellini , Regularity and existence of solutions of elliptic equations with \((p,q)\) growth conditions . J. Diff. Eq. 90 ( 1991 ) 1 - 30 . Zbl 0724.35043 · Zbl 0724.35043 [20] P. Marcellini , Everywhere regularity for a class of elliptic systems without growth conditions . Ann. Scuola Normale Sup. Pisa, Cl. Sci. 23 ( 1996 ) 1 - 25 . Numdam | Zbl 0922.35031 · Zbl 0922.35031 [21] S. Müller and V. Šverák , Convex integration for Lipschitz mappings and counterexamples to regularity . Ann. of Math. 157 ( 2003 ) 715 - 742 . Zbl 1083.35032 · Zbl 1083.35032 [22] A. Passarelli di Napoli and F. Siepe , A regularity result for a class of anisotropic systems . Rend. Ist. Mat di Trieste ( 1997 ) 13 - 31 . Zbl 0909.49026 · Zbl 0909.49026 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.