zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bregman distances, totally convex functions, and a method for solving operator equations in Banach spaces. (English) Zbl 1130.47046
Summary: The aim of this paper is twofold. First, several basic mathematical concepts involved in the construction and study of Bregman type iterative algorithms are presented from a unified analytic perspective. Also, some gaps in the current knowledge about those concepts are filled in. Second, we employ existing results on total convexity, sequential consistency, uniform convexity and relative projections in order to define and study the convergence of a new Bregman type iterative method of solving operator equations.

MSC:
47J25Iterative procedures (nonlinear operator equations)
46B20Geometry and structure of normed linear spaces
49J53Set-valued and variational analysis
90C25Convex programming
WorldCat.org
Full Text: DOI EuDML
References:
[1] Y. I. Alber, “Some iterative methods for nonregular minimization problems and estimates of the speed of convergence,” Technicheskaya Kybernetika, vol. 3, pp. 22-30, 1988 (Russian).
[2] Y. I. Alber, “Generalized projection operators in Banach spaces: properties and applications,” in Functional-Differential Equations, M. E. Drakhlin and E. Litsyn, Eds., vol. 1 of Funct. Differential Equations Israel Sem., pp. 1-21, Coll. Judea Samaria, Ariel, 1993. · Zbl 0882.47046
[3] Y. I. Alber, “Metric and generalized projection operators in Banach spaces: properties and applications,” in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, vol. 178 of Lecture Notes in Pure and Appl. Math., pp. 15-50, Dekker, New York, 1996. · Zbl 0883.47083
[4] Y. I. Alber, “Generalized projections, decompositions, and the Pythagorean-type theorem in Banach spaces,” Applied Mathematics Letters, vol. 11, no. 6, pp. 115-121, 1998. · Zbl 0947.46012 · doi:10.1016/S0893-9659(98)00112-8
[5] Y. I. Alber, “Some new characteristics of Banach spaces,” preprint, 2004.
[6] Y. I. Alber and D. Butnariu, “Convergence of Bregman projection methods for solving consistent convex feasibility problems in reflexive Banach spaces,” Journal of Optimization Theory and Applications, vol. 92, no. 1, pp. 33-61, 1997. · Zbl 0886.90179 · doi:10.1023/A:1022631928592
[7] Y. I. Alber, D. Butnariu, and I. Ryazantseva, “Regularization and resolution of monotone variational inequalities with operators given by hypomonotone approximations,” Journal of Nonlinear and Convex Analysis, vol. 6, no. 1, pp. 23-53, 2005. · Zbl 1072.47060
[8] Y. I. Alber, A. N. Iusem, and M. V. Solodov, “Minimization of nonsmooth convex functionals in Banach spaces,” Journal of Convex Analysis, vol. 4, no. 2, pp. 235-255, 1997. · Zbl 0895.90150 · emis:journals/JCA/ · eudml:119555
[9] Y. I. Alber and S. Reich, “An iterative method for solving a class of nonlinear operator equations in Banach spaces,” Panamerican Mathematical Journal, vol. 4, no. 2, pp. 39-54, 1994. · Zbl 0851.47043
[10] E. Asplund, “Averaged norms,” Israel Journal of Mathematics, vol. 5, pp. 227-233, 1967. · Zbl 0153.44301 · doi:10.1007/BF02771611
[11] J.-B. Baillon and G. Haddad, “Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones,” Israel Journal of Mathematics, vol. 26, no. 2, pp. 137-150, 1977 (French). · Zbl 0352.47023 · doi:10.1007/BF03007664
[12] H. H. Bauschke and J. M. Borwein, “Legendre functions and the method of random Bregman projections,” Journal of Convex Analysis, vol. 4, no. 1, pp. 27-67, 1997. · Zbl 0894.49019 · emis:journals/JCA/vol.4_no.1/ · eudml:227096
[13] H. H. Bauschke, J. M. Borwein, and P. L. Combettes, “Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces,” Communications in Contemporary Mathematics, vol. 3, no. 4, pp. 615-647, 2001. · Zbl 1032.49025 · doi:10.1142/S0219199701000524
[14] H. H. Bauschke, J. M. Borwein, and P. L. Combettes, “Bregman monotone optimization algorithms,” SIAM Journal on Control and Optimization, vol. 42, no. 2, p. 596-636, 2003. · Zbl 1049.90053 · doi:10.1137/S0363012902407120
[15] H. H. Bauschke and P. L. Combettes, “Construction of best Bregman approximations in reflexive Banach spaces,” Proceedings of the American Mathematical Society, vol. 131, no. 12, p. 3757-3766, 2003. · Zbl 1040.41016 · doi:10.1090/S0002-9939-03-07050-3
[16] H. H. Bauschke and A. S. Lewis, “Dykstra/s algorithm with Bregman projections: a convergence proof,” Optimization, vol. 48, no. 4, pp. 409-427, 2000. · Zbl 0992.90052 · doi:10.1080/02331930008844513
[17] D. Bertsekas, Nonlinear Programming, Athena Scientific, Massachusetts, 2nd edition, 1999. · Zbl 1015.90077
[18] J. M. Borwein and A. S. Lewis, “Convergence of best entropy estimates,” SIAM Journal on Optimization, vol. 1, no. 2, pp. 191-205, 1991. · Zbl 0756.41037 · doi:10.1137/0801014
[19] J. M. Borwein and M. A. Limber, “On entropy maximization via convex programming,” preprint, 1996, available at http://citeseer.ist.psu.edu/71881.html.
[20] L. M. Bregman, “The relaxation method for finding common points of convex sets and its application to the solution of problems in convex programming,” USSR Computational Mathematics and Mathematical Physics, vol. 7, pp. 200-217, 1967. · Zbl 0186.23807 · doi:10.1016/0041-5553(67)90040-7
[21] R. E. Bruck, Jr., “A strongly convergent iterative solution of 0\in U(x) for a maximal monotone operator U in Hilbert space,” Journal of Mathematical Analysis and Applications, vol. 48, pp. 114-126, 1974. · Zbl 0288.47048 · doi:10.1016/0022-247X(74)90219-4
[22] R. E. Bruck, Jr., “An iterative solution of a variational inequality for certain monotone operators in Hilbert space,” American Mathematical Society Bulletin, vol. 81, no. 5, pp. 890-892, 1975. · Zbl 0332.49005 · doi:10.1090/S0002-9904-1975-13874-2
[23] R. S. Burachik, Generalized proximal point methods for the variational inequality problem, M.S. thesis, Instituto de Mathematica Pura e Aplicada (IMPA), Rio de Janeiro, 1995.
[24] R. S. Burachik and S. Scheimberg, “A proximal point method for the variational inequality problem in Banach spaces,” SIAM Journal on Control and Optimization, vol. 39, no. 5, pp. 1633-1649, 2000. · Zbl 0988.90045 · doi:10.1137/S0363012998339745
[25] D. Butnariu, Y. Censor, and S. Reich, “Iterative averaging of entropic projections for solving stochastic convex feasibility problems,” Computational Optimization and Applications, vol. 8, no. 1, pp. 21-39, 1997. · Zbl 0880.90106 · doi:10.1023/A:1008654413997
[26] D. Butnariu and A. N. Iusem, “Local moduli of convexity and their application to finding almost common fixed points of measurable families of operators,” in Recent Developments in Optimization Theory and Nonlinear Analysis (Jerusalem, 1995), Y. Censor and S. Reich, Eds., vol. 204 of Contemp. Math., pp. 61-91, American Mathematical Society, Rhode Island, 1997. · Zbl 0874.46006
[27] D. Butnariu and A. N. Iusem, “On a proximal point method for convex optimization in Banach spaces,” Numerical Functional Analysis and Optimization, vol. 18, no. 7-8, pp. 723-744, 1997. · Zbl 0891.49002 · doi:10.1080/01630569708816788
[28] D. Butnariu and A. N. Iusem, Totally Convex Functions for Fixed Points Computation and Infinite Dimensional Optimization, vol. 40 of Applied Optimization, Kluwer Academic, Dordrecht, 2000. · Zbl 0960.90092
[29] D. Butnariu, A. N. Iusem, and R. S. Burachik, “Iterative methods of solving stochastic convex feasibility problems and applications,” Computational Optimization and Applications, vol. 15, no. 3, pp. 269-307, 2000. · Zbl 0947.90080 · doi:10.1023/A:1008795702124
[30] D. Butnariu, A. N. Iusem, and E. Resmerita, “Total convexity for powers of the norm in uniformly convex Banach spaces,” Journal of Convex Analysis, vol. 7, no. 2, pp. 319-334, 2000. · Zbl 0971.46005 · eudml:121340
[31] D. Butnariu, A. N. Iusem, and C. Z\ualinescu, “On uniform convexity, total convexity and convergence of the proximal point and outer Bregman projection algorithms in Banach spaces,” Journal of Convex Analysis, vol. 10, no. 1, pp. 35-61, 2003. · Zbl 1091.90078 · http://www.heldermann.de/JCA/JCA10/jca1002.htm
[32] D. Butnariu, S. Reich, and A. J. Zaslavski, “Weak convergence of orbits of nonlinear operators in reflexive Banach spaces,” Numerical Functional Analysis and Optimization, vol. 24, no. 5-6, pp. 489-508, 2003. · Zbl 1071.47052 · doi:10.1081/NFA-120023869
[33] D. Butnariu and E. Resmerita, “The outer Bregman projection method for stochastic feasibility problems in Banach spaces,” in Inherently Parallel Algorithms in Feasibility and Optimization and Their Applications (Haifa, 2000), D. Butnariu, Y. Censor, and S. Reich, Eds., vol. 8 of Stud. Comput. Math., pp. 69-86, North-Holland, Amsterdam, 2001. · Zbl 1160.90691
[34] C. Byrne, “A unified treatment of some iterative algorithms in signal processing and image reconstruction,” Inverse Problems, vol. 20, no. 1, pp. 103-120, 2004. · Zbl 1051.65067 · doi:10.1088/0266-5611/20/1/006
[35] Y. Censor and A. Lent, “An iterative row-action method for interval convex programming,” Journal of Optimization Theory and Applications, vol. 34, no. 3, pp. 321-353, 1981. · Zbl 0431.49042 · doi:10.1007/BF00934676
[36] Y. Censor and S. A. Zenios, Parallel Optimization. Theory, Algorithms, and Applications, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 1997. · Zbl 0945.90064
[37] I. Cioranescu, Geometry of Banach Spaces, Duality Mappings and Nonlinear Problems, vol. 62 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, 1990. · Zbl 0712.47043
[38] J. A. Clarkson, “Uniformly convex spaces,” Transactions of the American Mathematical Society, vol. 40, no. 3, pp. 396-414, 1936. · Zbl 0015.35604 · doi:10.2307/1989630
[39] A. L. Dontchev and T. Zolezzi, Well-Posed Optimization Problems, vol. 1543 of Lecture Notes in Mathematics, Springer, Berlin, 1993. · Zbl 0797.49001
[40] J. Eckstein, “Nonlinear proximal point algorithms using Bregman functions, with applications to convex programming,” Mathematics of Operations Research, vol. 18, no. 1, pp. 202-226, 1993. · Zbl 0807.47036 · doi:10.1287/moor.18.1.202
[41] P. P. B. Eggermont, “Maximum entropy regularization for Fredholm integral equations of the first kind,” SIAM Journal on Mathematical Analysis, vol. 24, no. 6, pp. 1557-1576, 1993. · Zbl 0791.65099 · doi:10.1137/0524088
[42] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976. · Zbl 0322.90046
[43] H. W. Engl and G. Landl, “Convergence rates for maximum entropy regularization,” SIAM Journal on Numerical Analysis, vol. 30, no. 5, pp. 1509-1536, 1993. · Zbl 0790.65110 · doi:10.1137/0730079
[44] K. Fan and I. Glicksberg, “Some geometric properties of the spheres in a normed linear space,” Duke Mathematical Journal, vol. 25, pp. 553-568, 1958. · Zbl 0084.33101 · doi:10.1215/S0012-7094-58-02550-X
[45] R. Glowinski, J.-L. Lions, and R. Trémolières, Numerical Analysis of Variational Inequalities, vol. 8 of Studies in Mathematics and Its Applications, North-Holland, Amsterdam, 1981. · Zbl 0463.65046
[46] R. B. Holmes, A Course on Optimization and Best Approximation, Lecture Notes in Mathematics, Vol. 257, Springer, Berlin, 1972. · Zbl 0235.41016 · doi:10.1007/BFb0059450
[47] T. Ibaraki, Y. Kimura, and W. Takahashi, “Convergence theorems for generalized projections and maximal monotone operators in Banach spaces,” Abstract and Applied Analysis, vol. 10, pp. 621-629, 2003. · Zbl 1045.47041 · doi:10.1155/S1085337503207065 · eudml:50913
[48] A. N. Iusem and R. Gárciga Otero, “Inexact versions of proximal point and augmented Lagrangian algorithms in Banach spaces,” Numerical Functional Analysis and Optimization, vol. 22, no. 5-6, pp. 609-640, 2001. · Zbl 1018.90067 · doi:10.1081/NFA-100105310
[49] A. N. Iusem and R. Gárciga Otero, “Augmented Lagrangian methods for cone-constrained convex optimization in Banach spaces,” Journal of Nonlinear and Convex Analysis, vol. 3, no. 2, pp. 155-176, 2002. · Zbl 1175.90414
[50] M. \uI. Kadec/, “Spaces isomorphic to a locally uniformly convex space,” Izvestija Vys\vs U\vcebnyh ZavedeniĭMatematika, vol. 6, no. 13, pp. 51-57, 1959 (Russian).
[51] K. C. Kiwiel, “Proximal minimization methods with generalized Bregman functions,” SIAM Journal on Control and Optimization, vol. 35, no. 4, pp. 1142-1168, 1997. · Zbl 0890.65061 · doi:10.1137/S0363012995281742
[52] L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” American Journal of Mathematics, vol. 73, pp. 615-624, 1951. · Zbl 0043.10602 · doi:10.2307/2372313
[53] F. Liu and M. Z. Nashed, “Regularization of nonlinear ill-posed variational inequalities and convergence rates,” Set-Valued Analysis, vol. 6, no. 4, pp. 313-344, 1998. · Zbl 0924.49009 · doi:10.1023/A:1008643727926
[54] U. Mosco, “Convergence of convex sets and of solutions of variational inequalities,” Advances in Mathematics, vol. 3, pp. 510-585, 1969. · Zbl 0192.49101 · doi:10.1016/0001-8708(69)90009-7
[55] Z. Opial, “Weak convergence of the sequence of successive approximations for nonexpansive mappings,” American Mathematical Society Bulletin, vol. 73, pp. 591-597, 1967. · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0
[56] D. Pascali and S. Sburlan, Nonlinear Mappings of Monotone Type, Martinus Nijhoff, The Hague; Sijthoff & Noordhoff International, Alphen aan den Rijn, 1978. · Zbl 0423.47021
[57] R. R. Phelps, Convex Functions, Monotone Operators and Differentiability, vol. 1364 of Lecture Notes in Mathematics, Springer, Berlin, 2nd edition, 1993. · Zbl 0921.46039 · doi:10.1007/978-3-540-46077-0
[58] B. Polyak, “A general method for solving extremum problems,” Doklady Akedamii Nauk SSSR, vol. 174, pp. 593-597, 1967. · Zbl 0177.15102
[59] S. Reich, “Extension problems for accretive sets in Banach spaces,” Journal of Functional Analysis, vol. 26, no. 4, pp. 378-395, 1977. · Zbl 0943.47040 · doi:10.1016/0022-1236(77)90022-2
[60] S. Reich, “A weak convergence theorem for the alternating method with Bregman distances,” in Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, vol. 178 of Lecture Notes in Pure and Appl. Math., pp. 313-318, Dekker, New York, 1996. · Zbl 0378.47037 · doi:10.1016/0022-1236(77)90022-2
[61] E. Resmerita, Fixed point and optimization methods in infinite dimensional Banach spaces, M.S. thesis, University of Haifa, Israel, 2003.
[62] E. Resmerita, “On total convexity, Bregman projections and stability in Banach spaces,” Journal of Convex Analysis, vol. 11, pp. 1-16, 2004. · Zbl 1080.46010 · http://www.heldermann.de/JCA/JCA11/jca11001.htm
[63] R. T. Rockafellar, Convex Analysis, Princeton Mathematical Series, no. 28, Princeton University Press, New Jersey, 1970. · Zbl 0193.18401
[64] R. T. Rockafellar and R. J.-B. Wets, Variational Analysis, vol. 317 of Grundlehren der Mathematischen Wissenschaften, Springer, Berlin, 1998. · Zbl 0888.49001 · doi:10.1007/978-3-642-02431-3
[65] M. V. Solodov and B. F. Svaiter, “An inexact hybrid generalized proximal point algorithm and some new results on the theory of Bregman functions,” Mathematics of Operations Research, vol. 25, no. 2, pp. 214-230, 2000. · Zbl 0980.90097 · doi:10.1287/moor.25.2.214.12222
[66] S. L. Troyanski, “On locally uniformly convex and differentiable norms in certain non-separable Banach spaces,” Studia Mathematica, vol. 37, pp. 173-180, 1970. · Zbl 0214.12701 · eudml:217479
[67] A. A. Vladimirov, Ju. E. Nesterov, and Ju. N. \vCekanov, “Uniformly convex functionals,” Vestnik Moskovskogo Universiteta. Seriya XV. Vychislitel/naya Matematika i Kibernetika, vol. 3, pp. 12-23, 1978 (Russian). · Zbl 0442.47046
[68] C. Z\ualinescu, “On uniformly convex functions,” Journal of Mathematical Analysis and Applications, vol. 95, no. 2, pp. 344-374, 1983. · Zbl 0519.49010 · doi:10.1016/0022-247X(83)90112-9
[69] C. Z\ualinescu, Convex Analysis in General Vector Spaces, World Scientific, New Jersey, 2002. · Zbl 1023.46003