×

Mann and Ishikawa iterative processes for multivalued mappings in Banach spaces. (English) Zbl 1130.47050

Summary: Let \(K\) be a nonempty compact convex subset of a uniformly convex Banach space and let \(T:K\to\mathcal P(K)\) be a multivalued nonexpansive mapping. We prove that the sequences of Mann and Ishikawa iterates converge to a fixed point of \(T\). This generalizes former results proved by K.P.R.Sastry and G.V.R.Babu [Czech.Math.J.55, No.4, 817–826 (2005; Zbl 1081.47069)]. We also introduce both of the iterative processes in a new sense, and prove a convergence theorem of Mann iterates for a mapping defined on a noncompact domain.
Editor’s remark: An erratum to this paper has been posted by Y.-S. Song and H.-J. Wang in [Comput. Math. Appl. 55, No. 12, 2999–3002 (2008; Zbl 1142.47344)].

MSC:

47J25 Iterative procedures involving nonlinear operators
47H04 Set-valued operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
65J15 Numerical solutions to equations with nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Sastry, K. P.R.; Babu, G. V.R., Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point, Czechoslovak Math. J., 55, 817-826 (2005) · Zbl 1081.47069
[2] Browder, F. E., Nonlinear operators and nonlinear equations of evolution in Banach spaces, (Proc. Symp. Pure Math., vol. 18 (1976), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI) · Zbl 0176.45301
[3] Kirk, W. A., A fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly, 72, 1004-1006 (1965) · Zbl 0141.32402
[4] Ishikawa, S., Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44, 147-150 (1974) · Zbl 0286.47036
[5] Mann, W. R., Mean value methods in iteration, Proc. Amer. Math. Soc., 4, 506-510 (1953) · Zbl 0050.11603
[6] Rhoades, B. E., Comments on two fixed point iteration methods, J. Math. Anal. Appl., 56, 741-750 (1976) · Zbl 0353.47029
[7] Dotson, W. G., On the Mann iterative process, Trans. Amer. Math. Soc., 149, 65-73 (1970) · Zbl 0203.14801
[8] Franks, R. L.; Marzec, R. P., A theorem on mean value iterations, Proc. Amer. Math. Soc., 30, 324-326 (1971) · Zbl 0229.26005
[9] Groetsch, C. W., A note on segmenting Mann iterates, J. Math. Anal. Appl., 40, 369-372 (1972) · Zbl 0244.47042
[10] Ishikawa, S., Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc., 59, 65-71 (1976) · Zbl 0352.47024
[11] Kalinde, A. K.; Rhoades, B. E., Fixed point Ishikawa iterations, J. Math. Anal. Appl., 170, 600-606 (1992) · Zbl 0765.65053
[12] Tan, K. K.; Xu, H. K., Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178, 301-308 (1993) · Zbl 0895.47048
[13] Ghosh, M. K.; Debnath, L., Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl., 207, 96-103 (1997) · Zbl 0881.47036
[14] Chidume, C. E.; Mutangadura, S. A., An example of the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc., 129, 2359-2363 (2001) · Zbl 0972.47062
[15] Lim, T. C., A fixed point theorem for multivalued nonexpansive mappings in a uniformly convex Banach spsce, Bull. Amer. Math. Soc., 80, 1123-1126 (1974) · Zbl 0297.47045
[16] Xu, H. K., Inequalities in Banach spaces with applications, Nonlinear Anal., 16, 1127-1138 (1991) · Zbl 0757.46033
[17] Senter, H. F.; Dotson, W. G., Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44, 375-380 (1974) · Zbl 0299.47032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.