×

zbMATH — the first resource for mathematics

Cosmetic surgeries on genus one knots. (English) Zbl 1130.57020
Summary: In this paper, we prove that there are no truly cosmetic surgeries on genus one classical knots. If the two surgery slopes have the same sign, we give the only possibilities of reflectively cosmetic surgeries. The result is an application of Heegaard Floer theory and number theory.

MSC:
57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
57R58 Floer homology
53D40 Symplectic aspects of Floer homology and cohomology
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] T M Apostol, Introduction to analytic number theory, Springer (1976) · Zbl 0335.10001
[2] S A Bleiler, C D Hodgson, J R Weeks, Cosmetic surgery on knots, Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry (1999) 23 · Zbl 0948.57017
[3] R Dvornicich, On an equation in cyclotomic numbers, Acta Arith. 98 (2001) 71 · Zbl 0970.11039
[4] E Eftekhary, Longitude Floer homology and the Whitehead double, Algebr. Geom. Topol. 5 (2005) 1389 · Zbl 1087.57021
[5] V Ennola, On relations between cyclotomic units, J. Number Theory 4 (1972) 236 · Zbl 0236.12005
[6] R Fintushel, R J Stern, Constructing lens spaces by surgery on knots, Math. Z. 175 (1980) 33 · Zbl 0425.57001
[7] W Franz, Uber die Torsion einer Überdeckung, J. Reine Angew. Math. 173 (1935) 245 · Zbl 0012.12702
[8] D Gabai, Foliations and the topology of 3-manifolds II, J. Differential Geom. 26 (1987) 461 · Zbl 0627.57012
[9] P Ghiggini, Knot Floer homology detects genus-one fibred links · Zbl 1149.57019
[10] C M Gordon, J Luecke, Knots are determined by their complements, J. Amer. Math. Soc. 2 (1989) 371 · Zbl 0672.57009
[11] M Hedden, On knot Floer homology and cabling, Algebr. Geom. Topol. 5 (2005) 1197 · Zbl 1086.57014
[12] M Jankins, W D Neumann, Lectures on Seifert manifolds, Brandeis Lecture Notes 2, Brandeis University (1983)
[13] T Kadokami, Reidemeister torsion of homology lens spaces (2004) · Zbl 1145.57004
[14] R Kirby, Problems in low-dimensional topology, AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35
[15] P B Kronheimer, T Mrowka, P S Ozsváth, Z Szabó, Monopoles and lens space surgeries · Zbl 1204.57038
[16] M Lackenby, Dehn surgery on knots in 3-manifolds, J. Amer. Math. Soc. 10 (1997) 835 · Zbl 0889.57014
[17] Y Mathieu, Closed 3-manifolds unchanged by Dehn surgery, J. Knot Theory Ramifications 1 (1992) 279 · Zbl 0771.57008
[18] J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358 · Zbl 0147.23104
[19] Y Ni, Closed 3-braids are nearly fibred · Zbl 1183.57010
[20] Y Ni, Knot Floer homology detects fibred knots · Zbl 1138.57031
[21] Y Ni, Sutured Heegaard diagrams for knots, Algebr. Geom. Topol. 6 (2006) 513 · Zbl 1103.57021
[22] P Ozsváth, Z Szabó, Knot Floer homology and rational surgeries · Zbl 1226.57044
[23] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179 · Zbl 1025.57016
[24] P Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003) 185 · Zbl 1130.57302
[25] P Ozsváth, Z Szabó, Heegaard diagrams and holomorphic disks, Int. Math. Ser. (N. Y.) 3, Kluwer/Plenum, New York (2004) 301 · Zbl 1091.57010
[26] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. \((2)\) 159 (2004) 1027 · Zbl 1073.57009
[27] P Ozsváth, Z Szabó, Knot Floer homology, genus bounds, and mutation, Topology Appl. 141 (2004) 59 · Zbl 1052.57012
[28] G de Rham, S Maumary, M A Kervaire, Torsion et type simple d’homotopie, Lecture Notes in Mathematics 48, Springer (1967) · Zbl 0153.53901
[29] Y W Rong, Some knots not determined by their complements, Ser. Knots Everything 3, World Sci. Publ., River Edge, NJ (1993) 339 · Zbl 0837.57009
[30] R Rustamov, The renormalized Euler characteristic and L-space surgeries
[31] T Sakai, Reidemeister torsion of a homology lens space, Kobe J. Math. 1 (1984) 47 · Zbl 0572.57011
[32] V G Turaev, Reidemeister torsion and the Alexander polynomial, Mat. Sb. \((\)N.S.\()\) 18(66) (1976) 252 · Zbl 0381.57003
[33] V Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2001) · Zbl 0970.57001
[34] L C Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics 83, Springer (1997) · Zbl 0966.11047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.