×

zbMATH — the first resource for mathematics

The conformally invariant measure on self-avoiding loops. (English) Zbl 1130.60016
Let \(S\) be a Riemann surface and \(S'\subset S\) another Riemann surface contained in \(S\). The author shows that there exists a unique (up to multiplication) measure \(\mu_S\) on the set of self avoiding loops on \(S\) which satisfies the following two conditions: (1) It is conformally invariant, that is, for any two domains \(D, D'\subset S\), which are conformally equivalent, the image of the measure \(\mu_S\) restricted to loops contained in \(D\) via any conformal map from \(D\) to \(D'\) is the same as \(\mu_S\) restricted to loops contained in \(D'\). (2) It is invariant under restriction, that is, \(\mu_S'\) is equal to \(\mu_S\) restricted to loops contained in \(S'\).
For the special case \(S=\mathbb C\), the author first shows that (2) and a weaker version of (1), namely its restriction to simply connected domains, imply the uniqueness. The measure \(\mu_{\mathbb C}\) is then constructed from the measure on Brownian loops defined in G. F. Lawler and W. Werner [Probab. Theory Relat. Fields 128, 565–588 (2004; Zbl 1049.60072)] by considering outer boundaries of Brownian loops. Finally, by some SLE\(_{8/3}\) considerations for \(\mu_{\mathbb C}\) restricted to annular domains, it is proved that \(\mu_{\mathbb C}\) satisfies (1). The construction is then lifted to Riemann surfaces. The author then studies properties of \(\mu_{\mathbb C}\) and discuses some consequences concerning outer and inner boundaries of Brownian loops and critical percolation cluster.

MSC:
60D05 Geometric probability and stochastic geometry
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
82B43 Percolation
30C99 Geometric function theory
60J65 Brownian motion
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] M. Aizenman, B. Duplantier, A. Aharony (1999), Connectivity Exponents and External Perimeter in 2D Independent Percolation Models, Phys. Rev. Lett. 83, 1359.
[2] Richard F. Bass, Probabilistic techniques in analysis, Probability and its Applications (New York), Springer-Verlag, New York, 1995. · Zbl 0817.60001
[3] Michel Bauer and Denis Bernard, SLE martingales and the Virasoro algebra, Phys. Lett. B 557 (2003), no. 3-4, 309 – 316. · Zbl 1009.81022
[4] R. Bauer, R. Friedrich (2005), On chordal and bilateral SLE in multiply connected domains, preprint. · Zbl 1130.30006
[5] V. Beffara (2000), Mouvement Brownien plan, SLE, invariance conforme et dimensions fractales, Thèse de Doctorat, Université Paris-Sud.
[6] Vincent Beffara, Hausdorff dimensions for \?\?\?\(_{6}\), Ann. Probab. 32 (2004), no. 3B, 2606 – 2629. · Zbl 1055.60036
[7] Krzysztof Burdzy, Cut points on Brownian paths, Ann. Probab. 17 (1989), no. 3, 1012 – 1036. · Zbl 0691.60069
[8] Krzysztof Burdzy and Gregory F. Lawler, Nonintersection exponents for Brownian paths. II. Estimates and applications to a random fractal, Ann. Probab. 18 (1990), no. 3, 981 – 1009. · Zbl 0719.60085
[9] F. Camia, C. Newman (2005), The Full Scaling Limit of Two-Dimensional Critical Percolation, preprint. · Zbl 1117.60086
[10] J.L. Cardy (1984), Conformal invariance and surface critical behavior, Nucl. Phys. B 240, 514-532.
[11] R. Friedrich, On connections of Conformal Field Theory and Stochastic Loewner Evolutions, math-ph/0410029.
[12] R. Friedrich and J. Kalkkinen, On conformal field theory and stochastic Loewner evolution, Nuclear Phys. B 687 (2004), no. 3, 279 – 302. · Zbl 1149.81352
[13] Roland Friedrich and Wendelin Werner, Conformal restriction, highest-weight representations and SLE, Comm. Math. Phys. 243 (2003), no. 1, 105 – 122. · Zbl 1030.60095
[14] C. Garban, J.A. Trujillo-Ferreras (2005), The expected area of the Brownian loop is \( \pi/5\), Comm. Math. Phys., to appear. · Zbl 1107.82023
[15] M. Kontsevich (2003), CFT, SLE and phase boundaries, Preprint of the Max Planck Institute (Arbeitstagung 2003), 2003-60a.
[16] Gregory F. Lawler, Conformally invariant processes in the plane, Mathematical Surveys and Monographs, vol. 114, American Mathematical Society, Providence, RI, 2005. · Zbl 1074.60002
[17] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math. 187 (2001), no. 2, 237 – 273. , https://doi.org/10.1007/BF02392618 Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. II. Plane exponents, Acta Math. 187 (2001), no. 2, 275 – 308. · Zbl 0993.60083
[18] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math. 187 (2001), no. 2, 237 – 273. , https://doi.org/10.1007/BF02392618 Gregory F. Lawler, Oded Schramm, and Wendelin Werner, Values of Brownian intersection exponents. II. Plane exponents, Acta Math. 187 (2001), no. 2, 275 – 308. · Zbl 0993.60083
[19] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, The dimension of the planar Brownian frontier is 4/3, Math. Res. Lett. 8 (2001), no. 1-2, 13 – 23. , https://doi.org/10.4310/MRL.2001.v8.n1.a3 Gregory F. Lawler, Oded Schramm, and Wendelin Werner, The dimension of the planar Brownian frontier is 4/3, Math. Res. Lett. 8 (2001), no. 4, 401 – 411. · Zbl 1114.60316
[20] Gregory F. Lawler, Oded Schramm, and Wendelin Werner, On the scaling limit of planar self-avoiding walk, Fractal geometry and applications: a jubilee of Benoît Mandelbrot, Part 2, Proc. Sympos. Pure Math., vol. 72, Amer. Math. Soc., Providence, RI, 2004, pp. 339 – 364. · Zbl 1069.60089
[21] Gregory Lawler, Oded Schramm, and Wendelin Werner, Conformal restriction: the chordal case, J. Amer. Math. Soc. 16 (2003), no. 4, 917 – 955. · Zbl 1030.60096
[22] Gregory F. Lawler and José A. Trujillo Ferreras, Random walk loop soup, Trans. Amer. Math. Soc. 359 (2007), no. 2, 767 – 787. · Zbl 1120.60037
[23] Gregory F. Lawler and Wendelin Werner, Universality for conformally invariant intersection exponents, J. Eur. Math. Soc. (JEMS) 2 (2000), no. 4, 291 – 328. · Zbl 1098.60081
[24] Gregory F. Lawler and Wendelin Werner, The Brownian loop soup, Probab. Theory Related Fields 128 (2004), no. 4, 565 – 588. · Zbl 04576228
[25] Jean-François Le Gall, On the connected components of the complement of a two-dimensional Brownian path, Random walks, Brownian motion, and interacting particle systems, Progr. Probab., vol. 28, Birkhäuser Boston, Boston, MA, 1991, pp. 323 – 338. · Zbl 0748.60073
[26] Jean-François Le Gall, Some properties of planar Brownian motion, École d’Été de Probabilités de Saint-Flour XX — 1990, Lecture Notes in Math., vol. 1527, Springer, Berlin, 1992, pp. 111 – 235. · Zbl 0779.60068
[27] Paul Malliavin, The canonic diffusion above the diffeomorphism group of the circle, C. R. Acad. Sci. Paris Sér. I Math. 329 (1999), no. 4, 325 – 329 (English, with English and French summaries). · Zbl 1006.60073
[28] Benoit B. Mandelbrot, The fractal geometry of nature, W. H. Freeman and Co., San Francisco, Calif., 1982. Schriftenreihe für den Referenten. [Series for the Referee]. · Zbl 0504.28001
[29] T. S. Mountford, On the asymptotic number of small components created by planar Brownian motion, Stochastics Stochastics Rep. 28 (1989), no. 3, 177 – 188. · Zbl 0686.60087
[31] Steffen Rohde and Oded Schramm, Basic properties of SLE, Ann. of Math. (2) 161 (2005), no. 2, 883 – 924. · Zbl 1081.60069
[32] Oded Schramm, Scaling limits of loop-erased random walks and uniform spanning trees, Israel J. Math. 118 (2000), 221 – 288. · Zbl 0968.60093
[33] O. Schramm, S. Sheffield (2005), in preparation.
[34] S. Sheffield, W. Werner (2005), in preparation.
[35] Stanislav Smirnov, Critical percolation in the plane: conformal invariance, Cardy’s formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 3, 239 – 244 (English, with English and French summaries). · Zbl 0985.60090
[36] Wendelin Werner, Sur la forme des composantes connexes du complémentaire de la courbe brownienne plane, Probab. Theory Related Fields 98 (1994), no. 3, 307 – 337 (French, with English and French summaries). · Zbl 0792.60075
[37] Wendelin Werner, Random planar curves and Schramm-Loewner evolutions, Lectures on probability theory and statistics, Lecture Notes in Math., vol. 1840, Springer, Berlin, 2004, pp. 107 – 195. · Zbl 1057.60078
[38] Wendelin Werner, SLEs as boundaries of clusters of Brownian loops, C. R. Math. Acad. Sci. Paris 337 (2003), no. 7, 481 – 486 (English, with English and French summaries). · Zbl 1029.60085
[39] Wendelin Werner, Girsanov’s transformation for \?\?\?(\?,\?) processes, intersection exponents and hiding exponents, Ann. Fac. Sci. Toulouse Math. (6) 13 (2004), no. 1, 121 – 147 (English, with English and French summaries). · Zbl 1059.60099
[40] Wendelin Werner, Conformal restriction and related questions, Probab. Surv. 2 (2005), 145 – 190. · Zbl 1189.60032
[41] W. Werner (2005), Some recent aspects of random conformally invariant systems, Lecture Notes from Les Houches summer school, July 2005.
[42] W. Werner, in preparation.
[43] Marc Yor, Loi de l’indice du lacet brownien, et distribution de Hartman-Watson, Z. Wahrsch. Verw. Gebiete 53 (1980), no. 1, 71 – 95 (French). · Zbl 0436.60057
[44] D. Zhan (2004), Random Loewner chains in Riemann surfaces, PhD dissertation, Caltech.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.