zbMATH — the first resource for mathematics

Second phase spinodal decomposition for the Cahn-Hilliard-Cook equation. (English) Zbl 1130.60066
The authors consider a stochastic Cahn-Hilliard-Cook model. In a previous paper, the same authors proved that in this model the homogeneous state is no longer in equilibrium since the stochastic fluctuations drive the dynamics quickly away from the homogeneous state. In the present paper they study the spinodal decomposition in the Cahn-Hilliard-Cook model. They show that such decomposition is divided in two stages. First, the authors consider a general framework involving nonlinear semigroups in Hilbert spaces. They show that theses equations have basically linear dynamics far from equilibrium. In a first stage this is a consequence of the closeness of the solution to the homogeneous state. During a second stage it is due to sharp nonlinearity estimates in a region of phase space. Finally, these results are applied to a stochastic Cahn-Hilliard-Cook equation. They are used to explain spinodal decomposition which addresses the dynamics and the morphology of the observed patterns.

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35K35 Initial-boundary value problems for higher-order parabolic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
Full Text: DOI
[1] R. Aurich, A. Bäcker, R. Schubert, and M. Taglieber, Maximum norms of chaotic quantum eigenstates and random waves, Phys. D 129 (1999), no. 1-2, 1 – 14. · Zbl 0960.81019
[2] Dirk Blömker, Nonhomogeneous noise and \?-Wiener processes on bounded domains, Stoch. Anal. Appl. 23 (2005), no. 2, 255 – 273. · Zbl 1068.60058
[3] Dirk Blömker, Stanislaus Maier-Paape, and Thomas Wanner, Spinodal decomposition for the Cahn-Hilliard-Cook equation, Comm. Math. Phys. 223 (2001), no. 3, 553 – 582. · Zbl 0993.60061
[4] Zdzisław Brzeźniak and Szymon Peszat, Maximal inequalities and exponential estimates for stochastic convolutions in Banach spaces, Stochastic processes, physics and geometry: new interplays, I (Leipzig, 1999) CMS Conf. Proc., vol. 28, Amer. Math. Soc., Providence, RI, 2000, pp. 55 – 64. · Zbl 0978.60071
[5] John W. Cahn, Free energy of a nonuniform system. II. Thermodynamic basis, Journal of Chemical Physics 30 (1959), 1121-1124.
[6] John W. Cahn and J. E. Hilliard, Free energy of a nonuniform system I. Interfacial free energy, Journal of Chemical Physics 28 (1958), 258-267.
[7] H. Cook, Brownian motion in spinodal decomposition, Acta Metallurgica 18 (1970), 297-306.
[8] R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. · Zbl 0051.28802
[9] Giuseppe Da Prato and Arnaud Debussche, Stochastic Cahn-Hilliard equation, Nonlinear Anal. 26 (1996), no. 2, 241 – 263. · Zbl 0838.60056
[10] Giuseppe Da Prato and Jerzy Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1992. · Zbl 0761.60052
[11] Jonathan P. Desi, Evelyn Sander, and Thomas Wanner, Complex transient patterns on the disk, Discrete Contin. Dyn. Syst. 15 (2006), no. 4, 1049 – 1078. · Zbl 1114.35084
[12] D. E. Edmunds and W. D. Evans, Spectral theory and differential operators, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1987. Oxford Science Publications. · Zbl 0628.47017
[13] M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 260, Springer-Verlag, New York, 1998. Translated from the 1979 Russian original by Joseph Szücs. · Zbl 0922.60006
[14] Marcio Gameiro, Konstantin Mischaikow, and Thomas Wanner, Evolution of pattern complexity in the Cahn-Hilliard theory of phase separation, Acta Materialia 53 (2005), no. 3, 693-704.
[15] Christopher P. Grant, Spinodal decomposition for the Cahn-Hilliard equation, Comm. Partial Differential Equations 18 (1993), no. 3-4, 453 – 490. · Zbl 0788.35132
[16] Wolfgang Hackenbroch and Anton Thalmaier, Stochastische Analysis, Mathematische Leitfäden. [Mathematical Textbooks], B. G. Teubner, Stuttgart, 1994 (German). Eine Einführung in die Theorie der stetigen Semimartingale. [An introduction to the theory of continuous semimartingales]. · Zbl 0815.60046
[17] Daniel Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. · Zbl 0456.35001
[18] J. S. Langer, Theory of spinodal decomposition in alloys, Annals of Physics 65 (1971), 53-86.
[19] Stanislaus Maier-Paape and Thomas Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. I. Probability and wavelength estimate, Comm. Math. Phys. 195 (1998), no. 2, 435 – 464. · Zbl 0931.35064
[20] Stanislaus Maier-Paape and Thomas Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: nonlinear dynamics, Arch. Ration. Mech. Anal. 151 (2000), no. 3, 187 – 219. · Zbl 0954.35089
[21] Szymon Peszat, Exponential tail estimates for infinite-dimensional stochastic convolutions, Bull. Polish Acad. Sci. Math. 40 (1992), no. 4, 323 – 333. · Zbl 0818.60050
[22] Evelyn Sander and Thomas Wanner, Monte Carlo simulations for spinodal decomposition, J. Statist. Phys. 95 (1999), no. 5-6, 925 – 948. · Zbl 1005.82507
[23] Evelyn Sander and Thomas Wanner, Unexpectedly linear behavior for the Cahn-Hilliard equation, SIAM J. Appl. Math. 60 (2000), no. 6, 2182 – 2202. · Zbl 0969.35074
[24] Jan Seidler and Takuya Sobukawa, Exponential integrability of stochastic convolutions, J. London Math. Soc. (2) 67 (2003), no. 1, 245 – 258. · Zbl 1045.60070
[25] Thomas Wanner, Maximum norms of random sums and transient pattern formation, Trans. Amer. Math. Soc. 356 (2004), no. 6, 2251 – 2279. · Zbl 1073.35101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.