Kendon, Viv Decoherence in quantum walks - a review. (English) Zbl 1130.81325 Math. Struct. Comput. Sci. 17, No. 6, 1169-1220 (2007). Summary: The development of quantum walks in the context of quantum computation, as generalisations of random walk techniques, has led rapidly to several new quantum algorithms. These all follow a unitary quantum evolution, apart from the final measurement. Since logical qubits in a quantum computer must be protected from decoherence by error correction, there is no need to consider decoherence at the level of algorithms. Nonetheless, enlarging the range of quantum dynamics to include non-unitary evolution provides a wider range of possibilities for tuning the properties of quantum walks. For example, small amounts of decoherence in a quantum walk on the line can produce more uniform spreading (a top-hat distribution), without losing the quantum speed up. This paper reviews the work on decoherence, and more generally on non-unitary evolution, in quantum walks and suggests what future questions might prove interesting to pursue in this area. Cited in 2 ReviewsCited in 63 Documents MSC: 81P68 Quantum computation 82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics 81-02 Research exposition (monographs, survey articles) pertaining to quantum theory PDF BibTeX XML Cite \textit{V. Kendon}, Math. Struct. Comput. Sci. 17, No. 6, 1169--1220 (2007; Zbl 1130.81325) Full Text: DOI arXiv OpenURL References: [1] Konno, Interdisciplinary Infor. Sci. 10 pp 11– (2004) · Zbl 1052.60079 [2] DOI: 10.1142/S0219477505002987 [3] DOI: 10.2969/jmsj/1150287309 · Zbl 1173.81318 [4] DOI: 10.1023/A:1023413713008 · Zbl 1329.82012 [5] Knight, J. Mod. Opt. 51 pp 1761– (2004) [6] DOI: 10.1103/PhysRevA.68.020301 [7] DOI: 10.1103/PhysRevA.71.022307 · Zbl 1227.82011 [8] DOI: 10.1103/PhysRevA.67.042315 [9] DOI: 10.1098/rsta.2006.1901 · Zbl 1152.81751 [10] DOI: 10.1142/S0219749906002195 · Zbl 1121.81025 [11] DOI: 10.1007/s00440-004-0423-2 · Zbl 1086.60025 [12] Kempe, Contemp. Phys. 44 pp 302– (2003) [13] DOI: 10.1103/PhysRevA.69.052323 [14] DOI: 10.1103/PhysRevLett.91.066801 [15] DOI: 10.1103/PhysRevB.56.15215 [16] Grossing, Complex Systems 2 pp 197– (1988) [17] DOI: 10.1103/PhysRevE.69.026119 [18] DOI: 10.1142/S0219025705001895 [19] DOI: 10.1103/PhysRevE.72.047102 [20] DOI: 10.1088/0305-4470/37/30/013 · Zbl 1067.82024 [21] DOI: 10.1103/PhysRevA.73.054302 [22] DOI: 10.1103/PhysRevA.74.030301 [23] DOI: 10.1007/BF01886518 [24] DOI: 10.1103/PhysRevA.73.012308 [25] DOI: 10.1016/j.physleta.2004.03.005 · Zbl 1123.82332 [26] DOI: 10.1103/PhysRevA.73.012313 [27] Shor, SIAM J. Sci Statist. Comput. 26 pp 1484– (1997) · Zbl 1005.11065 [28] DOI: 10.1103/PhysRevA.67.052307 [29] DOI: 10.1103/PhysRevA.68.062315 [30] Fedichkin, Quantum Information and Computation 6 pp 263– (2006) [31] DOI: 10.1103/PhysRevA.58.915 [32] DOI: 10.1103/PhysRevA.73.012302 [33] DOI: 10.1145/102782.102783 · Zbl 0799.68107 [34] DOI: 10.1103/PhysRevA.66.052319 [35] DOI: 10.1137/S0895479802410293 · Zbl 1055.05073 [36] DOI: 10.1103/PhysRevA.70.042312 · Zbl 1227.81156 [37] DOI: 10.1103/PhysRevA.70.022314 [38] DOI: 10.1103/PhysRevA.67.042305 [39] Childs, Quantum Information and Computation 5 pp 593– (2005) [40] DOI: 10.1088/0305-4470/36/33/305 · Zbl 1049.82025 [41] DOI: 10.1103/PhysRevA.72.062317 [42] DOI: 10.1016/j.physa.2004.08.070 [43] DOI: 10.1016/j.physa.2004.02.061 [44] DOI: 10.1103/PhysRevA.76.042306 [45] DOI: 10.1088/1367-2630/9/3/072 [46] DOI: 10.1103/PhysRevLett.93.190503 [47] DOI: 10.1088/1367-2630/7/1/156 [48] DOI: 10.1103/PhysRevA.67.052317 [49] DOI: 10.1103/PhysRevLett.91.130602 [50] DOI: 10.1103/PhysRevA.67.032304 [51] DOI: 10.1103/PhysRevA.61.013410 [52] DOI: 10.1103/PhysRevA.72.012332 [53] DOI: 10.1137/S0097539796300933 · Zbl 0895.68044 [54] DOI: 10.1023/A:1023012502046 · Zbl 1019.05046 [55] DOI: 10.1016/j.physleta.2003.08.023 · Zbl 1056.81049 [56] DOI: 10.1016/j.jcss.2004.03.005 · Zbl 1107.81010 [57] DOI: 10.1103/PhysRev.109.1492 [58] Montanaro, Quantum Information and Computation 7 pp 93– (2007) [59] DOI: 10.1063/1.523304 [60] DOI: 10.1016/S0375-9601(96)00745-1 · Zbl 1037.82529 [61] DOI: 10.1007/BF02199356 · Zbl 0952.37501 [62] DOI: 10.1088/1367-2630/9/4/087 [63] DOI: 10.1006/jcss.2000.1732 · Zbl 0990.68519 [64] DOI: 10.1088/1367-2630/5/1/383 [65] DOI: 10.1103/PhysRevA.65.032310 [66] DOI: 10.1007/s11080-006-8220-2 · Zbl 1105.15020 [67] DOI: 10.1088/0305-4470/35/12/304 · Zbl 1041.81077 [68] DOI: 10.1103/PhysRevA.68.052305 [69] Lo, Quantum Information and Computation 6 pp 370– (2006) [70] DOI: 10.1103/PhysRevA.74.042334 [71] DOI: 10.1103/PhysRevA.73.032341 [72] DOI: 10.1103/PhysRevLett.95.080501 [73] DOI: 10.1103/PhysRevA.74.022310 [74] DOI: 10.1103/PhysRevLett.79.4794 [75] DOI: 10.1142/S0219749903000383 · Zbl 1069.81505 [76] DOI: 10.1103/PhysRevA.72.062304 [77] Ahmadi, Quantum Information and Computation 3 pp 611– (2003) [78] DOI: 10.1103/PhysRevA.48.1687 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.