×

Genus 3 normal coverings of the Riemann sphere branched over 4 points. (English) Zbl 1131.14030

From the authors’ abstract: In this paper we study the 5 families of genus 3 compact Riemann surfaces which are normal coverings of the Riemann sphere branched over 4 points from very different aspects: their moduli spaces, the uniform Belyi functions that factorize through the quotient by the automorphism groups and the Weierstrass points of the non-hyperelliptic families.

MSC:

14H15 Families, moduli of curves (analytic)
14H45 Special algebraic curves and curves of low genus
14H55 Riemann surfaces; Weierstrass points; gap sequences
30F20 Classification theory of Riemann surfaces
30F35 Fuchsian groups and automorphic functions (aspects of compact Riemann surfaces and uniformization)
PDFBibTeX XMLCite
Full Text: DOI Euclid EuDML

References:

[1] Bétréma, J. and Zvonkin. A.: Plane trees and Shabat polynomials. Proceedings of the 5th Conference on Formal Power Series and Algebraic Combinatorics (Florence, 1993). Discrete Math. 153 (1996), no. 1-3, 47-58. · Zbl 0851.05098 · doi:10.1016/0012-365X(95)00127-I
[2] Broughton, S. A.: Classifying finite group actions on surfaces of low genus. J. Pure Appl. Algebra 69 (1990), no. 3, 233-270. · Zbl 0722.57005 · doi:10.1016/0022-4049(91)90021-S
[3] Bujalance, E., Costa, A. F., Gromadzki, G. and Singerman, D.: Automorphism groups of complex doubles of Klein surfaces. Glasgow Math. J. 36 (1994), no. 3, 313-330. · Zbl 0810.30035 · doi:10.1017/S0017089500030925
[4] Bujalance, E., Cirre, F. J., Gamboa, J. M. and Gromadzki, G.: On compact Riemann surfaces with dihedral groups of automorphisms. Math. Proc. Cambridge Philos. Soc. 134 (2003), no. 3, 465-477. · Zbl 1059.30030 · doi:10.1017/S030500410200662X
[5] Farkas, H. and Kra, I.: Riemann surfaces . Graduate Texts in Mathematics 71 . Springer-Verlag, New York-Berlin, 1980. · Zbl 0475.30001
[6] González-Díez, G.: Loci of curves which are prime Galois coverings of \( \mathbbCP^1 \). Proc. London Math. Soc. (3) 62 (1991), no. 3, 469-489. · Zbl 0679.14010 · doi:10.1112/plms/s3-62.3.469
[7] González-Díez, G. and Harvey, W.: Moduli of Riemann surfaces with symmetry. In Discrete Groups and Geometry , 75-93. London Math. Soc. Lecture Note Ser. 173 . Cambridge Univ. Press, Cambridge, 1992. · Zbl 0763.32014
[8] Jones, G. A.: Characters and surfaces: a survey. In The atlas of finite groups: ten years on (Birmingham, 1995) , 90-118. London Math. Soc. Lecture Note Ser. 249 . Cambridge Univ. Press, Cambridge, 1998. · Zbl 0922.30031
[9] Harvey, W. H.: On branch loci in Teichmüller space. Trans. Amer. Math. Soc. 153 (1971), 387-399. JSTOR: · Zbl 0211.10503 · doi:10.2307/1995564
[10] Kuribayashi, A. and Komiya, K.: On the Structure of the Automorphism Group of a Compact Riemann Surface of Genus 3. Bull. Facul. Sci. and Eng. Chou University 23 (1980), 1-34. · Zbl 0464.30036
[11] Nag, S.: The Complex Analytic Theory of Teichmüller Spaces . Wiley, New York, 1988. · Zbl 0667.30040
[12] Rodríguez, R. E. and González-Aguilera, V.: Fermat quartic curve, Klein’s curve and the tetrahedron. Contemp. Math. 201 (1997), 43-62. · Zbl 0911.14021
[13] Rohrlich, D. E.: Some remarks on Weierstrass points. In Number Theory Related to Fermat’s Last Theorem , 71-78. Progr. Math. 26 . Birkhäuser, Basel, 1982. · Zbl 0517.14004
[14] Singerman, D.: Subgroups of Fuchsian Groups and Finite Permutation Groups. Bull. London Math. Soc. 2 (1970), 319-323. · Zbl 0206.30804 · doi:10.1112/blms/2.3.319
[15] Singerman, D. and Syddhall, R.: Belyi Uniformization of Elliptic Curves. Bull. London Math. Soc. 139 (1997), 443-451. · Zbl 0868.14019 · doi:10.1112/S0024609396002834
[16] Streit, M.: Homology, Belyi Functions and Canonical Curves. Manuscripta Math. 90 (1996), 489-509. · Zbl 0887.14013 · doi:10.1007/BF02568321
[17] Streit, M. and Wolfart, J.: Characters and Galois invariants of regular dessins. Rev. Mat. Complut. 13 (2000), no. 1, 49-81. · Zbl 1053.14021 · doi:10.5209/rev_REMA.2000.v13.n1.17090
[18] Wiman, A.: Über die hyperelliptischen Kurven und diejenigen vom Geschlechte \(p=3\) welche eindeutige Transformationen in sich zulassen. Bihang Till Kungl. Svenska Vet. Akad. Handlingar 21 (1895), no. 1, 1-23. · JFM 26.0658.02
[19] Zvonkin, A.: Megamaps: constructions and examples. In Discrete models: Combinatorics, Computation and Geometry (Paris, 2001) , 329-339. Discrete Math. Theor. Compt. Sci. Proc. AA. Maison Inform. Math. Discret., Paris, 2001. · Zbl 1007.05099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.