Mouton, Frédéric Local Fatou theorem and the density of energy on manifolds of negative curvature. (English) Zbl 1131.31004 Rev. Mat. Iberoam. 23, No. 1, 1-16 (2007). \(M\) is a complete, simply connected Riemannian manifold, with sectional curvatures bounded between two negative constants. The geometric boundary \(\partial M\), defined by the geodesic rays, agrees with the Martin boundary of \(M\), with respect to the Laplace-Beltrami operator. The boundary carries the family \(\mu = (\mu _ {x})_ {x\in M}\) of equivalent harmonic measures. The density of energy (for some harmonic function \(u\) on \(M\)) is defined as: \[ D_ {c} ^ {0} = -\frac{1}{2} \int _ {\Gamma _ {c}^ {\theta}} \Delta | u|\,dx \] where \(c>0\), \(\theta \in \partial M\), \(\gamma _ {\theta }\) is the geodesic ray from the basepoint \(o\in M\) to \(\theta \) and \[ \Gamma _ {c} ^ {\theta } := \{ x \in M \mid d(x, \gamma _ {\theta } ) < c \} \]The main result asserts that a harmonic function \(u\) on \(M\) is non-tangentially convergent at \(\mu \)-almost all \(\theta \) such that \(D_ {c} ^ {0}\) is finite. Reviewer: Liliana Popa (Iaşi) MSC: 31C12 Potential theory on Riemannian manifolds and other spaces 31C35 Martin boundary theory 58J65 Diffusion processes and stochastic analysis on manifolds 60J45 Probabilistic potential theory Keywords:harmonic functions; Fatou type theorems; negative curvature; Brownian motion × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] Ancona, A.: Negatively curved manifolds, elliptic operators and the Mar- tin boundary. Ann. of Math. (2) 125 (1987), 495-536. · Zbl 0652.31008 · doi:10.2307/1971409 [2] Ancona, A.: Théorie du potentiel sur les graphes et les variétés. In École d’été de Probabilités de Saint-Flour XVIII-1988, 1-112. Lecture Notes in Math. 1427. Springer, Berlin, 1990. · Zbl 0719.60074 [3] Anderson, M. T. and Schoen, R.: Positive harmonic functions on complete manifolds of negative curvature. Ann. of Math. (2) 121 (1985), 429-461. · Zbl 0587.53045 · doi:10.2307/1971181 [4] Arai, H.: Boundary behavior of functions on complete manifolds of nega- tive curvature. Tohoku Math. J. (2) 41 (1989), 307-319. · Zbl 0686.31004 · doi:10.2748/tmj/1178227828 [5] Arai, H.: Hardy spaces, Carleson measures and a gradient estimate for the harmonic functions on negatively curved manifolds. In Taniguchi Con- ference on Mathematics Nara ’98, 1-49. Adv. Stud. Pure Math. 31. Math. Soc. Japan, Tokyo, 2001. · Zbl 1011.31005 [6] Brossard, J.: Densité de l’intégrale d’aire dans Rn+1 + et limites non tan- gentielles. Invent. Math. 93 (1988), 297-308. · Zbl 0655.31004 · doi:10.1007/BF01394335 [7] Carleson, L.: On the existence of boundary values for harmonic functions in several variables. Ark. Mat. 4 (1962), 393-399. · Zbl 0107.08402 · doi:10.1007/BF02591620 [8] Cheng, S.-Y. and Yau, S.-T.: Differential equations on Riemannian manifolds and their geometric applications. Comm. Pure Appl. Math. 28 (1975), 333-354. · Zbl 0312.53031 · doi:10.1002/cpa.3160280303 [9] Cifuentes, P. and Korányi, A.: Admissible convergence in Cartan- Hadamard manifolds. J. Geom. Anal. 11 (2001), 233-239. · Zbl 1051.53025 · doi:10.1007/BF02921964 [10] Doob, J. L.: Conditional brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France 85 (1957), 431-458. · Zbl 0097.34004 [11] Fatou, P.: Séries trigonométriques et séries de Taylor. Acta Math. 30 (1906), 335-400. · JFM 37.0283.01 [12] Gundy, R.F. and Silverstein, M.L.: The density of the area integral in Rn+1 + . Ann. Inst. Fourier (Grenoble) 35 (1985), 215-229. · Zbl 0544.31012 · doi:10.5802/aif.1006 [13] Gundy, R. F.: The density of the area integral. In Conference on har- monic analysis in honor of Antoni Zygmund, vol. I, II (Chicago, Ill., 1981), 138-149. Wadsworth Math. Ser.. Wadsworth, Belmont, CA, 1983. [14] Korányi, A. and Putz, R. B.: Local Fatou theorem and area theorem for symmetric spaces of rank one. Trans. Amer. Math. Soc. 224 (1976), 157-168. · Zbl 0318.31006 · doi:10.2307/1997421 [15] Mouton, F.: Convergence non-tangentielle des fonctions harmoniques en courbure négative. PhD Thesis, Grenoble, 1994. [16] Mouton, F.: Comportement asymptotique des fonctions harmoniques en courbure négative. Comment. Math. Helv. 70 (1995), 475-505. · Zbl 0840.60018 · doi:10.1007/BF02566019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.