zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos synchronization of the master-slave generalized Lorenz systems via linear state error feedback control. (English) Zbl 1131.34040
The paper provides sufficient conditions for the synchronization of coupled systems of ordinary differential equations $$\dot x = g(x), \quad \dot y = g(y) +K(x-y), $$ with $y,z\in \Bbb R^3$, and where $g(\cdot)$ represents the right-hand side of the generalized Lorenz system, $K$ is the coupling matrix. Synchronization is considered here in a local sense, i.e. $\Vert x-y \Vert \to 0$ as $t\to\infty$ for all sufficiently close initial conditions $x(0)$, $y(0)$. The main tools are linearization and Lyapunov functions.

34D05Asymptotic stability of ODE
34C15Nonlinear oscillations, coupled oscillators (ODE)
34C28Complex behavior, chaotic systems (ODE)
Full Text: DOI
[1] Vanēček, A.; Čelikovský, S.: Control systems: from linear analysis to synthesis of chaos. (1996) · Zbl 0874.93006
[2] Čelikovský, S.; Chen, G.: On a generalized Lorenz canonical form of chaotic systems. Internat. J. Bifur. chaos 12, 1789-1812 (2002) · Zbl 1043.37023
[3] Čelikovský, S.; Chen, G.: On the generalized Lorenz canonical form. Chaos solitons fractals 26, 1271-1276 (2005) · Zbl 1100.37016
[4] Chen, G.; Lü, J.: Dynamical analysis, control and synchronization of the Lorenz systems family. (2003)
[5] Čelikovský, S.; Chen, G.: Secure synchronization of a class of chaotic systems from a nonlinear observer approach. IEEE. trans. Automat. control 50, 76-82 (2005)
[6] Lü, J.; Zhou, T.; Zhang, S.: Chaos synchronization between linearly coupled chaotic systems. Chaos solitons fractals 14, 529-541 (2002) · Zbl 1067.37043
[7] Li, D.; Lu, J. -A.; Wu, X. Q.: Linearly coupled synchronization of the unified chaotic systems and the Lorenz systems. Chaos solitons fractals 23, 79-85 (2005) · Zbl 1063.37030
[8] Yu, Y.; Zhang, S.: The synchronization of linearly bidirectional coupled chaotic systems. Chaos solitons fractals 22, 189-197 (2004) · Zbl 1060.93538
[9] Jiang, G.; Tang, W. K. S.: A global chaos synchronization criterion for coupled chaotic systems via unidirectional linear error feedback approach. Internat. J. Bifur. chaos 12, 2239-2253 (2002) · Zbl 1052.34053
[10] Tao, C.: Dislocated feedback synchronization of Lorenz chaotic system. Phys. lett. A 348, 201-209 (2006) · Zbl 1195.37024
[11] Wang, Y.; Guan, Z. H.; Wang, H. O.: Feedback and adaptive control for the synchronization of Chen system via a single variable. Phys. lett. A 312, 34-40 (2003) · Zbl 1024.37053
[12] Han, X.; Lu, J. -A.; Wu, X. Q.: Adaptive feedback synchronization of Lü system. Chaos solitons fractals 22, 221-227 (2004) · Zbl 1060.93524
[13] Yassen, M. T.: Feedback and adaptive synchronization of chaotic Lü system. Chaos solitons fractals 25, 379-386 (2005) · Zbl 1125.93473
[14] Park, J. H.: Stability criterion for synchronization of linearly coupled unified chaotic systems. Chaos solitons fractals 23, 1319-1325 (2005) · Zbl 1080.37035
[15] Slotine, J. -J.E.; Li, W. P.: Applied non-linear control. (2004)
[16] Li, D.; Lu, J. -A.; Wu, X. Q.; Chen, G.: Estimating the bounds for the Lorenz family of chaotic systems. Chaos solitons fractals 23, 529-534 (2005) · Zbl 1061.93506
[17] Leonov, G.: Bound for attractors and the existence of homoclinic orbits in the Lorenz systems. J. appl. Math. mech. 65, 19-32 (2001)
[18] Yu, P.; Liao, X. X.: Globally attractive and positive invariant set of the Lorenz systems. Internat. J. Bifur. chaos 16, 757-764 (2006) · Zbl 1141.37335