## Semiclassical spectral instability for non-self-adjoint operators. I: A model. (Instabilité spectrale semiclassique pour des opérateurs non-autoadjoints. I: un modèle.)(French)Zbl 1131.34057

A simple 1-dimensional model problem is discussed and explored. Let $$\partial$$ denote 1-dimensional differentiation, then $$-\mathrm{i}\,\partial$$ is considered as a selfadjoint operator on the interval $$\left[0,2\pi\right]$$ with periodicity boundary conditions. Perturbations associated with this operator of the form $$P=-\mathrm{i}\, h\,\partial+g\left(m\right)$$ are considered, where $$g\left(m\right)$$ indicates the multiplication operator $$\left(g\left(m\right)f\right)\left(x\right)=g\left(x\right)\, f\left(x\right)$$, $$x\in\left[0,2\pi\right]$$, for an analytic complex-valued function $$g$$ with $$g^{\prime}$$ having a nonvanishing imaginary part and $$h\in]0,1]$$ is a parameter. Whereas the spectrum of $$-\mathrm{i}\, h\,\partial$$ is simply $$\frac{2\pi}{h}\left[\mathbb{Z}\right]$$, it is shown that for the perturbed case the eigenvalues of $$P$$ are distributed within the semi-classical “pseudo”-spectrum (given as the closure of the range of the semi-classical symbol $$\left(x,\xi\right)\mapsto h\xi+g\left(x\right)$$) according to a two-dimensional Weyl law.

### MSC:

 34L05 General spectral theory of ordinary differential operators 47E05 General theory of ordinary differential operators 34D10 Perturbations of ordinary differential equations
Full Text:

### References:

 [1] Agmon, S., Lectures on elliptic boundary value problems (1965) · Zbl 0151.20203 [2] Davies, E. B., Semiclassical states for Non-Self-Adjoint Schrödinger Operators, Commun. Math. Phys., 200, 35-41 (1999) · Zbl 0921.47060 [3] Burq, N.; Zworski, M., Semi-Classical Propagation, 223, 1-12 (2001) · Zbl 1042.81582 [4] Davies, E. B., Pseudospectra of differential operators, J.Operator theory, 43, 243-262 (2000) · Zbl 0998.34067 [5] Davies, E. B., Semigroup growth bounds · Zbl 1114.47040 [6] Hörmander, L., The analysis of Linear Partial Differential Operators, 1-3, 256-257 (19831985) [7] Levin, B. Ja., Distribution of Zeros of entire functions (1964) · Zbl 0152.06703 [8] Reddy, S.; Schmid, P.; Henningson, D., Pseudospectra of the Orr-Sommerfeld operator, Siam J. Appl. Math., 53, 15-45 (1993) · Zbl 0778.34060 [9] Sjöstrand, J.; Grigis, A., Microlocal Analysis for Differential Operators, 196 (1994) · Zbl 0804.35001 [10] Sjöstrand, J.; Dimassi, M., Spectral Asymptotics in the Semi-Classical Limit, 268 (1999) · Zbl 0926.35002 [11] Sjöstrand, J., Astérisque, 95 (1982) · Zbl 1384.35004 [12] Sjöstrand, J.; Zworski, M.; Dencker, N., Pseudospectra of semiclassical (pseudo-) differential operators, Comm. Pure Appl. Math., 57, 384-415 (2004) · Zbl 1054.35035 [13] Sjöstrand, J., Lectures on resonances · Zbl 0877.35090 [14] Tang, S. H.; Zworski, M., Resonance expansion of scattered waves, Comm. Pure Appl. Math., 53, 1305-1334 (2000) · Zbl 1032.35148 [15] Titchmarsh, E. C., The theory of functions (1939) · JFM 65.0302.01 [16] Trefethen, L. N., Numerical analysis, 260, 234-266 (1991) [17] Trefethen, L. N., Pseudospectra of linear operators, SIAM, 39, 3, 383-406 (1997) · Zbl 0896.15006 [18] Trefethen, L. N., Wave packet Pseudomodes of variable coefficient differential operators, Proceedings of the Royal Society, Series A, 461, 3099-3122 (2005) · Zbl 1206.34109 [19] Zworski, M., A remark on a paper of E.B. Davies, Proceedings of the AMS, 129, 2955-2957 (1999) · Zbl 0981.35107 [20] Zworski, M., Numerical linear algebra and solvability of partial differential equations, Comm. Math. Phys., 229, 293-307 (2002) · Zbl 1021.35077
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.