A remark on uniqueness of large solutions for elliptic systems of competitive type. (English) Zbl 1131.35015

Summary: We prove that the semilinear system \(\Delta u=a(x)u^pv^q\), \(\Delta v=b(x)u^rv^s\) in a smooth bounded domain \(\Omega\subset\mathbb R^N\) has a unique positive solution with the boundary condition \(u=v=+\infty\) on \(\partial\Omega\), provided that \(p,s>1\), \(q,r>0\) and \((p-1)(s-1)-qr>0\). The main novelty is imposing a growth on the possibly singular weights \(a(x)\), \(b(x)\) near \(\partial\Omega\), rather than requiring them to have a precise asymptotic behaviour.


35J60 Nonlinear elliptic equations
35J65 Nonlinear boundary value problems for linear elliptic equations
Full Text: DOI


[1] Bandle, C.; Marcus, M., Sur les solutions maximales de problèmes elliptiques non linéaires: Bornes isopérimetriques et comportement asymptotique, C. R. Acad. Sci. Paris Sér. I Math., 311, 91-93 (1990) · Zbl 0726.35041
[2] Bandle, C.; Marcus, M., ‘Large’ solutions of semilinear elliptic equations: Existence, uniqueness and asymptotic behaviour, J. Anal. Math., 58, 9-24 (1992) · Zbl 0802.35038
[3] Bieberbach, L., \( \Delta u = e^u\) und die automorphen Funktionen, Math. Ann., 77, 173-212 (1916)
[4] Chuaqui, M.; Cortázar, C.; Elgueta, M.; Flores, C.; García-Melián, J.; Letelier, R., On an elliptic problem with boundary blow-up and a singular weight: The radial case, Proc. Roy. Soc. Edinburgh, 133, 1283-1297 (2003) · Zbl 1039.35036
[5] Chuaqui, M.; Cortázar, C.; Elgueta, M.; García-Melián, J., Uniqueness and boundary behaviour of large solutions to elliptic problems with singular weights, Comm. Pure Appl. Anal., 3, 653-662 (2004) · Zbl 1174.35386
[6] Cîrstea, F.; Du, Y., General uniqueness results and variation speed for blow-up solutions of elliptic equations, Proc. London Math. Soc., 91, 459-482 (2005) · Zbl 1108.35068
[7] Cîrstea, F.; Rǎdulescu, V., Uniqueness of the blow-up boundary solution of logistic equations with absorption, C. R. Acad. Sci. Paris Sér. I Math., 335, 5, 447-452 (2002) · Zbl 1183.35124
[8] Cîrstea, F.; Rǎdulescu, V., Nonlinear problems with singular boundary conditions arising in population dynamics: A Karamata regular variation theory approach, Asymptot. Anal., 46, 275-298 (2006) · Zbl 1245.35037
[9] Dancer, N.; Du, Y., Effects of certain degeneracies in the predator-prey model, SIAM J. Math. Anal., 34, 2, 292-314 (2002) · Zbl 1055.35046
[10] Del Pino, M.; Letelier, R., The influence of domain geometry in boundary blow-up elliptic problems, Nonlinear Anal., 48, 6, 897-904 (2002) · Zbl 1142.35431
[11] Díaz, G.; Letelier, R., Explosive solutions of quasilinear elliptic equations: Existence and uniqueness, Nonlinear Anal., 20, 97-125 (1993) · Zbl 0793.35028
[12] Du, Y., Effects of a degeneracy in the competition model. Part I: Classical and generalized steady-state solutions, J. Differential Equations, 181, 92-132 (2002) · Zbl 1042.35016
[13] Du, Y., Effects of a degeneracy in the competition model. Part II: Perturbation and dynamical behaviour, J. Differential Equations, 181, 133-164 (2002) · Zbl 1042.35017
[14] Du, Y., Asymptotic behavior and uniqueness results for boundary blow-up solutions, Differential Integral Equations, 17, 819-834 (2004) · Zbl 1150.35369
[15] Du, Y.; Huang, Q., Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal., 31, 1-18 (1999) · Zbl 0959.35065
[16] García-Melián, J., Nondegeneracy and uniqueness for boundary blow-up elliptic problems, J. Differential Equations, 223, 208-227 (2006) · Zbl 1170.35405
[18] García-Melián, J.; Letelier-Albornoz, R.; Sabina de Lis, J., Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc., 129, 3593-3602 (2001) · Zbl 0989.35044
[19] García-Melián, J.; Letelier-Albornoz, R.; Sabina de Lis, J., The solvability of an elliptic system under a singular boundary condition, Proc. Roy. Soc. Edinburgh, 136, 509-546 (2006) · Zbl 1237.35048
[20] García-Melián, J.; Suárez, A., Existence and uniqueness of positive large solutions to some cooperative elliptic systems, Adv. Nonlinear Stud., 3, 193-206 (2003) · Zbl 1045.35025
[21] García-Melián, J.; Rossi, J. D., Boundary blow-up solutions to elliptic systems of competitive type, J. Differential Equations, 206, 156-181 (2004) · Zbl 1162.35359
[22] Keller, J. B., On solutions of \(\Delta u = f(u)\), Comm. Pure Appl. Math., 10, 503-510 (1957) · Zbl 0090.31801
[24] Kondrat’ev, V. A.; Nikishkin, V. A., Asymptotics, near the boundary, of a solution of a singular boundary value problem for a semilinear elliptic equation, Differ. Equ., 26, 345-348 (1990) · Zbl 0706.35054
[25] Loewner, C.; Nirenberg, L., Partial differential equations invariant under conformal of projective transformations, (Contributions to Analysis (a collection of papers dedicated to Lipman Bers) (1974), Academic Press: Academic Press New York), 245-272
[26] López-Gómez, J., Coexistence and metacoexistence for competitive species, Houston J. Math., 29, 2, 483-536 (2003) · Zbl 1034.35062
[27] López-Gómez, J., The boundary blow-up rate of large solutions, J. Differential Equations, 195, 25-45 (2003) · Zbl 1130.35329
[28] López-Gómez, J., Optimal uniqueness theorems and exact blow-up rates of large solutions, J. Differential Equations, 224, 385-439 (2006) · Zbl 1208.35036
[29] Marcus, M.; Véron, L., Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14, 237-274 (1997) · Zbl 0877.35042
[30] Véron, L., Semilinear elliptic equations with uniform blowup on the boundary, J. Anal. Math., 59, 231-250 (1992) · Zbl 0802.35042
[31] Zhang, Z., A remark on the existence of explosive solutions for a class of semilinear elliptic equations, Nonlinear Anal., 41, 143-148 (2000) · Zbl 0964.35053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.