Norm equivalence and composition operators between Bloch/Lipschitz spaces of the ball. (English) Zbl 1131.47018

For \(p>0\), let \({\mathcal B}^p(\mathbb B_n)\) and \({\mathcal L}_p(\mathbb B_n)\) denote, respectively, the \(p\)-Bloch and holomorphic \(p\)-Lipschitz spaces of the open unit ball \(\mathbb B_n\) in \(\mathbb C^n\). It is known that \({\mathcal B}^p(\mathbb B_n)\) and \({\mathcal L}_{1-p}(\mathbb B_n)\) are equal as sets when \(p\in(0,1)\). We prove that these spaces are additionally norm-equivalent, thus extending known results for \(n=1\) and the polydisk. As an application, we generalize work by K.M.Madigan [Proc.Am.Math.Soc.119, No.2, 465–473 (1993; Zbl 0793.47037)] on the disk by investigating boundedness of the composition operator \({\mathfrak C}_\varphi\) from \({\mathcal L}_p(\mathbb B_n)\) to \({\mathcal L}_q(\mathbb B_n)\).


47B33 Linear composition operators
32A37 Other spaces of holomorphic functions of several complex variables (e.g., bounded mean oscillation (BMOA), vanishing mean oscillation (VMOA))
46E15 Banach spaces of continuous, differentiable or analytic functions


Zbl 0793.47037
Full Text: DOI EuDML


[1] Choe BR: Projections, the weighted Bergman spaces, and the Bloch space.Proceedings of the American Mathematical Society 1990,108(1):127-136. 10.1090/S0002-9939-1990-0991692-0 · Zbl 0684.47022 · doi:10.1090/S0002-9939-1990-0991692-0
[2] Clahane DD: Composition operators on holomorphic function spaces of several compex variables, M.S. thesis. University of California, Irvine; 2000.
[3] Clahane DD, Stević S, Zhou Z: Composition operators on general Bloch spaces of the polydisk. preprint, 2004, http://arxiv.org/abs/math.CV/0506424
[4] Cowen CC, MacCluer BD: Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Florida; 1995. · Zbl 0873.47017
[5] Duren PL: Theory of HpSpaces, Pure and Applied Mathematics.Volume 38. Academic Press, New York; 1970. · Zbl 0215.20203
[6] Hardy GH, Littlewood JE: Some properties of fractional integrals. II.Mathematische Zeitschrift 1932,34(1):403-439. 10.1007/BF01180596 · Zbl 0003.15601 · doi:10.1007/BF01180596
[7] Madigan KM: Composition operators on analytic Lipschitz spaces.Proceedings of the American Mathematical Society 1993,119(2):465-473. 10.1090/S0002-9939-1993-1152987-6 · Zbl 0793.47037 · doi:10.1090/S0002-9939-1993-1152987-6
[8] Rudin, W., Function Theory in the Unit Ball of ℂn, No. 241 (1980), New York · Zbl 0495.32001
[9] Stević S: On an integral operator on the unit ball in.Journal of Inequalities and Applications 2005,2005(1):81-88. 10.1155/JIA.2005.81 · Zbl 1074.47013 · doi:10.1155/JIA.2005.81
[10] Yang W, Ouyang C: Exact location of-Bloch spaces inandof a complex unit ball.The Rocky Mountain Journal of Mathematics 2000,30(3):1151-1169. 10.1216/rmjm/1021477265 · Zbl 0978.32002 · doi:10.1216/rmjm/1021477265
[11] Zhou Z, Zeng H: Composition operators between-Bloch and-Bloch space in the unit ball.Progress in Natural Science. English Edition 2003,13(3):233-236. · Zbl 1039.32006
[12] Zhu K: Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics. Volume 226. Springer, New York; 2005. · Zbl 1067.32005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.