×

The expansion of a semigroup and a Riesz basis criterion. (English) Zbl 1131.47042

Let \(\mathcal{A}\) be the generator for a strongly continuous semigroup \(T(t)\) on a Hilbert space \(X\). Suppose that the singular set for \(\mathcal{A}\) can be split into two parts \(\sigma(\mathcal{A})=\sigma_1(\mathcal{A})\cup\sigma_2(\mathcal{A})\), where \(\sigma_2(\mathcal{A})\) consists all isolated eigenvalues.
Under the assumption that the isolated eigenvalues are contained in a vertical strip, that the multiplicity of the eigenvalues are uniformly bounded and that they satisfy \(\inf_{k\neq l}| \lambda_k-\lambda_l| >0\), the authors prove their main theorem, which says that there exist two \(T(t)\)-invariant subspaces \(X_1\), \(X_2\) such that \(\sigma(\left.\mathcal{A}\right| _{X_1})=\sigma_1(\mathcal{A})\), \(\sigma(\left.\mathcal{A}\right| _{X_2})=\sigma_2(\mathcal{A})\) and \(X_1\oplus X_2\subset X\) (the topological direct sum).
In addition, if the Riesz projectors for the eigenvalues satisfy a certain inequality, then \(X=X_1\oplus X_2\). As an application, the authors consider a heat exchanger system with boundary feedback. It is shown that in a certain Hilbert space, the corresponding semigroup fulfils the conditions of the main theorem.

MSC:

47D06 One-parameter semigroups and linear evolution equations
35F15 Boundary value problems for linear first-order PDEs
47A70 (Generalized) eigenfunction expansions of linear operators; rigged Hilbert spaces
Full Text: DOI

References:

[1] Adamjan, V.; Pivovarchik, V.; Tretter, C., On a class of non-self-adjoint quadratic matrix operator pencils Setarising in elasticity theory, J. Operator Theory, 47, 2, 325-341 (2002) · Zbl 1019.47017
[2] Avdonin, S. A.; Ivanov, S. A., Families of Exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems (1995), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0866.93001
[3] Avdonin, S. A.; Ivanov, S. A., Riesz bases of exponentials and divided differences (Russian), Algebra i Anal., 13, 3, 1-17 (2001), transl. St. Petersburg Math. J. 13(3) (2002) 339-351 · Zbl 0999.42018
[4] Avdonin, S. A.; Ivanov, S. A.; Russell, D. L., Exponential bases in Sobolev spaces, Control and Observation Problems, (Hoffmann, K.-H.; Leugering, G.; Troltzsch, F., Optimal Control of Partial Differential Equations (Chemnitz, 1998), International Series of Numerical Mathematics, vol. 133 (1999), Birkhäuser: Birkhäuser Basel), 33-42 · Zbl 0935.35014
[5] Avdonin, S. A.; Ivanov, S. A.; Russell, D. L., Exponential bases in Sobolev spaces, Control and observation problems for the wave equation, Proc. Roy. Soc. Edinburgh Section A, 130, 5, 947-970 (2000) · Zbl 0966.93057
[6] Avdonin, S. A.; Moran, W., Ingham-type inequalities and Riesz bases of divided of differences, Mathematical methods of optimization and control large-scale systems (Ekaterinburg, 2000), Internat. J. Appl. Math. Comput. Sci., 11, 4, 803-820 (2001) · Zbl 1031.93098
[7] Avdonin, S. A.; Tucsnark, M., Simultaneous controllability in sharp time for two elastic strings, ESAIM Control Optim. Calculus of Variations, 6, 259-273 (2001), (electronic) · Zbl 0995.93036
[8] Conrad, F.; Morgül, Ö., On the stabilization of a flexible beam with a tip mass, SIAM J. Control Optim., 36, 1962-1986 (1998) · Zbl 0927.93031
[9] Curtain, R. F.; Zwart, H. J., An Introduction to Infinite Dimensional Linear System Theory (1995), Springer: Springer New York · Zbl 0839.93001
[10] Dunford, N.; Schwartz, J. T., Linear Operators, Part III, Spectral Operators (1971), Wiley-Interscience: Wiley-Interscience New York · Zbl 0243.47001
[11] Gohberg, I.; Goldberg, S.; Kaashoek, M. A., (Classes of Linear Operators, vol. 1 (1990), Birkhäuser, Verlag: Birkhäuser, Verlag Basel, Boston, Berlin), 329-336 · Zbl 0745.47002
[12] Gohberg, I. C.; Krein, M. G., Introduction to the theory of linear nonselfadjoint operators, AMS Transl. Math. Monographs, 18 (1969) · Zbl 0181.13504
[13] Guo, B. Z., On the boundary control for a hybrid system with variable coefficients, J. Optim. Theory Appl., 114, 2, 373-395 (2002) · Zbl 1061.93055
[14] Guo, B. Z., Riesz basis property and exponential stability of controlled Euler-Bernoulli beam equation with variable coefficients, SIAM J. Control Optim., 40, 6, 1905-1923 (2002) · Zbl 1015.93025
[15] Kaashoek, M. A.; Verduyn Lunel, S. M., An integrability condition on the resolvent for hyperbolicity of the semigroup, J. Differential Equations, 112, 2, 374-406 (1994), (doi:10.1006/jdeq.1994.1109) · Zbl 0834.47036
[16] Kunimatsu, N.; Sano, H., Stability analysis of heat-exchanger equations with boundary feedbacks, IMA J. Math. Control Inform., 15, 317-330 (1998) · Zbl 0917.93034
[17] Larsen, E. W.; Zweifel, P. F., On the spectrum of the linear transport operator, J. Math. Phys., 15, 1987-1997 (1974)
[18] Y.I. Lyubarskii, K. Seip, A splitting problem for unconditional bases of complex exponentials. Entire functions in modern analysis (Tel-Aviv, 1997), Israel Mathematical Conference Proceedings, vol. 15, Bar-Ilan University, Ramat Gan, 2001, pp. 233-242.; Y.I. Lyubarskii, K. Seip, A splitting problem for unconditional bases of complex exponentials. Entire functions in modern analysis (Tel-Aviv, 1997), Israel Mathematical Conference Proceedings, vol. 15, Bar-Ilan University, Ramat Gan, 2001, pp. 233-242. · Zbl 1015.42022
[19] Lyubarskii, Y. I.; Seip, K., Weighted Paley-Wiener spaces, J. Amer. Math. Soc., 15, 4, 979-1006 (2002), (electronic) · Zbl 1017.46018
[20] Naimark, M. A., (Linear Differential Operators, vol. I (1967), Ungar: Ungar New York) · Zbl 0219.34001
[21] Pazy, A., Semigroup of Linear Operators and Applications to Partial Differential Equations (1983), Springer: Springer New York · Zbl 0516.47023
[22] Rao, B. P., Optimal energy decay rate in a damped Rayleigh beam, optimization methods, (Cox, S.; Lasiecka, I., Partial Differential Equations, Contemporary Mathematics, vol. 209 (1997)), 221-229
[23] Shkalikov, A. A., Boundary value problems for ordinary differential equations with a parameter in the boundary conditions, Engl. transl. J. Sov. Math., 33, 6, 1311-1342 (1986) · Zbl 0609.34019
[24] Shubov, M. A., The Riesz basis property of the system of root vectors for the equation of a nonhomogeneous damped stringtransformation operators method, Methods Appl. Anal., 6, 4, 571-591 (1999) · Zbl 0986.74039
[25] Shubov, M. A., Asymptotic and spectral analysis of the spatially nonhomogeneous Timoshenko beam model, Math. Nachr., 241, 125-162 (2002) · Zbl 1037.47032
[26] Tretter, C., On \(\lambda \)-Nonlinear Boundary Eigenvalue Problem, (Mathematical Research, vol. 71 (1993), Akademie Verlag: Akademie Verlag Berlin) · Zbl 0974.34079
[27] Verduyn Lunel, S. M.; Yakubovich, D. V., A functional model approach to linear neutral functional differential equations, Integral Equations Operator Theory, 27, 347-378 (1997) · Zbl 0891.34077
[28] Xu, G. Q.; Wang, S. H., The completeness of systems of generalized eigenfunctions of generators of Riesz semigroups (Chinese), Acta Math. Sinica, 39, 2, 263-267 (1996) · Zbl 0867.47015
[29] Xu, G. Q.; Feng, D. X., The Riesz basis property of a Timoshenko beam with boundary feedback and application, IMA J. Appl. Math., 67, 4, 357-370 (2002) · Zbl 1136.74343
[30] Young, R. M., An Introduction to Nonharmonic Fourier Series (1980), Academic Press: Academic Press New York · Zbl 0493.42001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.