×

Chebyshev finite difference method for Fredholm integro-differential equation. (English) Zbl 1131.65107

Summary: A Chebyshev finite difference method is proposed in order to solve linear and nonlinear second-order Fredholm integro-differential equations. The approach consists of reducing the problem to a set of algebraic equations. This method can be regarded as a nonuniform finite difference scheme. Some numerical results are also given to demonstrate the validity and applicability of the presented technique.

MSC:

65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
45G10 Other nonlinear integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1017/CBO9780511626340 · doi:10.1017/CBO9780511626340
[2] DOI: 10.1137/0711014 · Zbl 0245.65065 · doi:10.1137/0711014
[3] Volk W., Journal of Integral Equations 9 pp 171– (1985) · Zbl 0586.65096
[4] DOI: 10.1016/S0096-3003(02)00347-8 · Zbl 1025.65063 · doi:10.1016/S0096-3003(02)00347-8
[5] DOI: 10.1016/S0096-3003(02)00081-4 · Zbl 1027.65182 · doi:10.1016/S0096-3003(02)00081-4
[6] Ayad A., Studia Universitatis Babes-Bolia 41 pp 1– (1996)
[7] Micala G., Reveue D, Analyse Numerique et Theorie de L’Approximation 53 pp 59– (1993)
[8] DOI: 10.1093/comjnl/13.3.297 · Zbl 0239.65097 · doi:10.1093/comjnl/13.3.297
[9] Behiry S. H., International Journal of Applied Mathematics 11 pp 27– (2002)
[10] DOI: 10.1155/MPE/2006/96184 · Zbl 1200.65112 · doi:10.1155/MPE/2006/96184
[11] DOI: 10.1016/S0096-3003(02)00214-X · Zbl 1027.65098 · doi:10.1016/S0096-3003(02)00214-X
[12] DOI: 10.1016/j.amc.2003.11.016 · Zbl 1059.76043 · doi:10.1016/j.amc.2003.11.016
[13] Elbarbary E. M.E., International Journal on Numerical Methods in Heat Fluid Flow
[14] DOI: 10.1016/S0960-0779(03)00069-9 · Zbl 1083.92010 · doi:10.1016/S0960-0779(03)00069-9
[15] DOI: 10.1007/BF01386223 · Zbl 0093.14006 · doi:10.1007/BF01386223
[16] Davis P. J., Method of Numerical Integration, 2. ed. (1970)
[17] DOI: 10.1016/j.apm.2005.02.003 · Zbl 1099.65136 · doi:10.1016/j.apm.2005.02.003
[18] DOI: 10.1002/num.20071 · Zbl 1084.65099 · doi:10.1002/num.20071
[19] DOI: 10.1016/j.matcom.2005.10.001 · Zbl 1089.65085 · doi:10.1016/j.matcom.2005.10.001
[20] DOI: 10.1080/00207160500069847 · Zbl 1087.65119 · doi:10.1080/00207160500069847
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.